import os import torch import librosa import numpy as np import gradio as gr from sonics import HFAudioClassifier # Model configurations MODEL_IDS = { "SpecTTTra-α (5s)": "awsaf49/sonics-spectttra-alpha-5s", "SpecTTTra-β (5s)": "awsaf49/sonics-spectttra-beta-5s", "SpecTTTra-γ (5s)": "awsaf49/sonics-spectttra-gamma-5s", "SpecTTTra-α (120s)": "awsaf49/sonics-spectttra-alpha-120s", "SpecTTTra-β (120s)": "awsaf49/sonics-spectttra-beta-120s", "SpecTTTra-γ (120s)": "awsaf49/sonics-spectttra-gamma-120s", } device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_cache = {} def load_model(model_name): """Load model if not already cached""" if model_name not in model_cache: model_id = MODEL_IDS[model_name] model = HFAudioClassifier.from_pretrained(model_id) model = model.to(device) model.eval() model_cache[model_name] = model return model_cache[model_name] def process_audio(audio_path, model_name): """Process audio file and return prediction""" try: model = load_model(model_name) max_time = model.config.audio.max_time # Load and process audio audio, sr = librosa.load(audio_path, sr=16000) chunk_samples = int(max_time * sr) total_chunks = len(audio) // chunk_samples middle_chunk_idx = total_chunks // 2 # Extract middle chunk start = middle_chunk_idx * chunk_samples end = start + chunk_samples chunk = audio[start:end] if len(chunk) < chunk_samples: chunk = np.pad(chunk, (0, chunk_samples - len(chunk))) # Get prediction with torch.no_grad(): chunk = torch.from_numpy(chunk).float().to(device) pred = model(chunk.unsqueeze(0)) prob = torch.sigmoid(pred).cpu().numpy()[0] return {"Real": 1 - prob, "Fake": prob} except Exception as e: return {"Error": str(e)} def predict(audio_file, model_name): """Gradio interface function""" if audio_file is None: return {"Message": "Please upload an audio file"} return process_audio(audio_file, model_name) # Create Gradio interface with gr.Blocks() as demo: gr.HTML( """