Update app.py
Browse files
app.py
CHANGED
|
@@ -1,265 +1,266 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import torch
|
| 3 |
-
import librosa
|
| 4 |
-
import numpy as np
|
| 5 |
-
import gradio as gr
|
| 6 |
-
from sonics import HFAudioClassifier
|
| 7 |
-
|
| 8 |
-
# Model configurations
|
| 9 |
-
MODEL_IDS = {
|
| 10 |
-
"SpecTTTra-α (5s)": "awsaf49/sonics-spectttra-alpha-5s",
|
| 11 |
-
"SpecTTTra-β (5s)": "awsaf49/sonics-spectttra-beta-5s",
|
| 12 |
-
"SpecTTTra-γ (5s)": "awsaf49/sonics-spectttra-gamma-5s",
|
| 13 |
-
"SpecTTTra-α (120s)": "awsaf49/sonics-spectttra-alpha-120s",
|
| 14 |
-
"SpecTTTra-β (120s)": "awsaf49/sonics-spectttra-beta-120s",
|
| 15 |
-
"SpecTTTra-γ (120s)": "awsaf49/sonics-spectttra-gamma-120s",
|
| 16 |
-
}
|
| 17 |
-
|
| 18 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
-
model_cache = {}
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def load_model(model_name):
|
| 23 |
-
"""Load model if not already cached"""
|
| 24 |
-
if model_name not in model_cache:
|
| 25 |
-
model_id = MODEL_IDS[model_name]
|
| 26 |
-
model = HFAudioClassifier.from_pretrained(model_id)
|
| 27 |
-
model = model.to(device)
|
| 28 |
-
model.eval()
|
| 29 |
-
model_cache[model_name] = model
|
| 30 |
-
return model_cache[model_name]
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def process_audio(audio_path, model_name):
|
| 34 |
-
"""Process audio file and return prediction"""
|
| 35 |
-
try:
|
| 36 |
-
model = load_model(model_name)
|
| 37 |
-
max_time = model.config.audio.max_time
|
| 38 |
-
|
| 39 |
-
# Load and process audio
|
| 40 |
-
audio, sr = librosa.load(audio_path, sr=16000)
|
| 41 |
-
chunk_samples = int(max_time * sr)
|
| 42 |
-
total_chunks = len(audio) // chunk_samples
|
| 43 |
-
middle_chunk_idx = total_chunks // 2
|
| 44 |
-
|
| 45 |
-
# Extract middle chunk
|
| 46 |
-
start = middle_chunk_idx * chunk_samples
|
| 47 |
-
end = start + chunk_samples
|
| 48 |
-
chunk = audio[start:end]
|
| 49 |
-
|
| 50 |
-
if len(chunk) < chunk_samples:
|
| 51 |
-
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
|
| 52 |
-
|
| 53 |
-
# Get prediction
|
| 54 |
-
with torch.no_grad():
|
| 55 |
-
chunk = torch.from_numpy(chunk).float().to(device)
|
| 56 |
-
pred = model(chunk.unsqueeze(0))
|
| 57 |
-
prob = torch.sigmoid(pred).cpu().numpy()[0]
|
| 58 |
-
|
| 59 |
-
real_prob = 1 - prob
|
| 60 |
-
fake_prob = prob
|
| 61 |
-
|
| 62 |
-
# Return formatted results
|
| 63 |
-
return {
|
| 64 |
-
"Real": float(real_prob),
|
| 65 |
-
"Fake": float(fake_prob)
|
| 66 |
-
}
|
| 67 |
-
|
| 68 |
-
except Exception as e:
|
| 69 |
-
return {"Error": str(e)}
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
def predict(audio_file, model_name):
|
| 73 |
-
"""Gradio interface function"""
|
| 74 |
-
if audio_file is None:
|
| 75 |
-
return {"Message": "Please upload an audio file"}
|
| 76 |
-
return process_audio(audio_file, model_name)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
# Updated CSS with better color scheme for resource links
|
| 80 |
-
css = """
|
| 81 |
-
/* Custom CSS that works with Ocean theme */
|
| 82 |
-
.sonics-header {
|
| 83 |
-
text-align: center;
|
| 84 |
-
padding: 20px;
|
| 85 |
-
margin-bottom: 20px;
|
| 86 |
-
border-radius: 10px;
|
| 87 |
-
}
|
| 88 |
-
|
| 89 |
-
.sonics-logo {
|
| 90 |
-
max-width: 150px;
|
| 91 |
-
border-radius: 10px;
|
| 92 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.3);
|
| 93 |
-
}
|
| 94 |
-
|
| 95 |
-
.sonics-title {
|
| 96 |
-
font-size: 28px;
|
| 97 |
-
margin-bottom: 10px;
|
| 98 |
-
}
|
| 99 |
-
|
| 100 |
-
.sonics-subtitle {
|
| 101 |
-
margin-bottom: 15px;
|
| 102 |
-
}
|
| 103 |
-
|
| 104 |
-
.sonics-description {
|
| 105 |
-
font-size: 16px;
|
| 106 |
-
margin: 0;
|
| 107 |
-
}
|
| 108 |
-
|
| 109 |
-
/* Resource links styling */
|
| 110 |
-
.resource-links {
|
| 111 |
-
display: flex;
|
| 112 |
-
justify-content: center;
|
| 113 |
-
flex-wrap: wrap;
|
| 114 |
-
gap: 8px;
|
| 115 |
-
margin-bottom: 25px;
|
| 116 |
-
}
|
| 117 |
-
|
| 118 |
-
.resource-link {
|
| 119 |
-
background-color: #222222;
|
| 120 |
-
color: #4aedd6;
|
| 121 |
-
border: 1px solid #333333;
|
| 122 |
-
padding: 8px 16px;
|
| 123 |
-
border-radius: 20px;
|
| 124 |
-
margin: 5px;
|
| 125 |
-
text-decoration: none;
|
| 126 |
-
display: inline-block;
|
| 127 |
-
font-weight: 500;
|
| 128 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.3);
|
| 129 |
-
transition: all 0.2s ease;
|
| 130 |
-
}
|
| 131 |
-
|
| 132 |
-
.resource-link:hover {
|
| 133 |
-
background-color: #333333;
|
| 134 |
-
transform: translateY(-2px);
|
| 135 |
-
box-shadow: 0 3px 6px rgba(0, 0, 0, 0.4);
|
| 136 |
-
transition: all 0.2s ease;
|
| 137 |
-
}
|
| 138 |
-
|
| 139 |
-
.resource-link-icon {
|
| 140 |
-
margin-right: 5px;
|
| 141 |
-
}
|
| 142 |
-
|
| 143 |
-
/* Footer styling */
|
| 144 |
-
.sonics-footer {
|
| 145 |
-
text-align: center;
|
| 146 |
-
margin-top: 30px;
|
| 147 |
-
padding: 15px;
|
| 148 |
-
}
|
| 149 |
-
"""
|
| 150 |
-
|
| 151 |
-
# Create Gradio interface
|
| 152 |
-
with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo:
|
| 153 |
-
# Title and Logo
|
| 154 |
-
gr.HTML(
|
| 155 |
-
"""
|
| 156 |
-
<div class="sonics-header">
|
| 157 |
-
<div style="display: flex; justify-content: center; margin-bottom: 20px;">
|
| 158 |
-
<img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg" class="sonics-logo">
|
| 159 |
-
</div>
|
| 160 |
-
<h1 class="sonics-title">SONICS: Synthetic Or Not - Identifying Counterfeit Songs</h1>
|
| 161 |
-
<h3 class="sonics-subtitle">ICLR 2025 [Poster]</h3>
|
| 162 |
-
<p class="sonics-description">
|
| 163 |
-
Detect if a song is real or AI-generated with our state-of-the-art models.
|
| 164 |
-
Simply upload an audio file to verify its authenticity!
|
| 165 |
-
</p>
|
| 166 |
-
</div>
|
| 167 |
-
"""
|
| 168 |
-
)
|
| 169 |
-
|
| 170 |
-
# Resource Links - Updated with custom styling to match screenshot
|
| 171 |
-
gr.HTML(
|
| 172 |
-
"""
|
| 173 |
-
<div class="resource-links">
|
| 174 |
-
<a href="https://openreview.net/forum?id=PY7KSh29Z8" target="_blank" class="resource-link">
|
| 175 |
-
<span class="resource-link-icon">📄</span>Paper
|
| 176 |
-
</a>
|
| 177 |
-
<a href="https://huggingface.co/datasets/awsaf49/sonics" target="_blank" class="resource-link">
|
| 178 |
-
<span class="resource-link-icon">🎵</span>Dataset
|
| 179 |
-
</a>
|
| 180 |
-
<a href="https://huggingface.co/collections/awsaf49/sonics-spectttra-67bb6517b3920fd18e409013" target="_blank" class="resource-link">
|
| 181 |
-
<span class="resource-link-icon">🤖</span>Models
|
| 182 |
-
</a>
|
| 183 |
-
<a href="https://arxiv.org/abs/2408.14080" target="_blank" class="resource-link">
|
| 184 |
-
<span class="resource-link-icon">🔬</span>ArXiv
|
| 185 |
-
</a>
|
| 186 |
-
<a href="https://github.com/awsaf49/sonics" target="_blank" class="resource-link">
|
| 187 |
-
<span class="resource-link-icon">💻</span>GitHub
|
| 188 |
-
</a>
|
| 189 |
-
</div>
|
| 190 |
-
"""
|
| 191 |
-
)
|
| 192 |
-
|
| 193 |
-
# Main Interface
|
| 194 |
-
with gr.Row(equal_height=True):
|
| 195 |
-
with gr.Column():
|
| 196 |
-
audio_input = gr.Audio(
|
| 197 |
-
label="Upload Audio File",
|
| 198 |
-
type="filepath",
|
| 199 |
-
elem_id="audio_input"
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
model_dropdown = gr.Dropdown(
|
| 203 |
-
choices=list(MODEL_IDS.keys()),
|
| 204 |
-
value="SpecTTTra-γ (5s)",
|
| 205 |
-
label="Select Model",
|
| 206 |
-
elem_id="model_dropdown"
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
submit_btn = gr.Button(
|
| 210 |
-
"✨ Analyze Audio",
|
| 211 |
-
elem_id="submit_btn"
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
output
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
- **SpecTTTra
|
| 231 |
-
- **SpecTTTra
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
- **
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
["example/
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
<p
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
| 265 |
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import librosa
|
| 4 |
+
import numpy as np
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from sonics import HFAudioClassifier
|
| 7 |
+
|
| 8 |
+
# Model configurations
|
| 9 |
+
MODEL_IDS = {
|
| 10 |
+
"SpecTTTra-α (5s)": "awsaf49/sonics-spectttra-alpha-5s",
|
| 11 |
+
"SpecTTTra-β (5s)": "awsaf49/sonics-spectttra-beta-5s",
|
| 12 |
+
"SpecTTTra-γ (5s)": "awsaf49/sonics-spectttra-gamma-5s",
|
| 13 |
+
"SpecTTTra-α (120s)": "awsaf49/sonics-spectttra-alpha-120s",
|
| 14 |
+
"SpecTTTra-β (120s)": "awsaf49/sonics-spectttra-beta-120s",
|
| 15 |
+
"SpecTTTra-γ (120s)": "awsaf49/sonics-spectttra-gamma-120s",
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
+
model_cache = {}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def load_model(model_name):
|
| 23 |
+
"""Load model if not already cached"""
|
| 24 |
+
if model_name not in model_cache:
|
| 25 |
+
model_id = MODEL_IDS[model_name]
|
| 26 |
+
model = HFAudioClassifier.from_pretrained(model_id)
|
| 27 |
+
model = model.to(device)
|
| 28 |
+
model.eval()
|
| 29 |
+
model_cache[model_name] = model
|
| 30 |
+
return model_cache[model_name]
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def process_audio(audio_path, model_name):
|
| 34 |
+
"""Process audio file and return prediction"""
|
| 35 |
+
try:
|
| 36 |
+
model = load_model(model_name)
|
| 37 |
+
max_time = model.config.audio.max_time
|
| 38 |
+
|
| 39 |
+
# Load and process audio
|
| 40 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
| 41 |
+
chunk_samples = int(max_time * sr)
|
| 42 |
+
total_chunks = len(audio) // chunk_samples
|
| 43 |
+
middle_chunk_idx = total_chunks // 2
|
| 44 |
+
|
| 45 |
+
# Extract middle chunk
|
| 46 |
+
start = middle_chunk_idx * chunk_samples
|
| 47 |
+
end = start + chunk_samples
|
| 48 |
+
chunk = audio[start:end]
|
| 49 |
+
|
| 50 |
+
if len(chunk) < chunk_samples:
|
| 51 |
+
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
|
| 52 |
+
|
| 53 |
+
# Get prediction
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
chunk = torch.from_numpy(chunk).float().to(device)
|
| 56 |
+
pred = model(chunk.unsqueeze(0))
|
| 57 |
+
prob = torch.sigmoid(pred).cpu().numpy()[0]
|
| 58 |
+
|
| 59 |
+
real_prob = 1 - prob
|
| 60 |
+
fake_prob = prob
|
| 61 |
+
|
| 62 |
+
# Return formatted results
|
| 63 |
+
return {
|
| 64 |
+
"Real": float(real_prob),
|
| 65 |
+
"Fake": float(fake_prob)
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
except Exception as e:
|
| 69 |
+
return {"Error": str(e)}
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def predict(audio_file, model_name):
|
| 73 |
+
"""Gradio interface function"""
|
| 74 |
+
if audio_file is None:
|
| 75 |
+
return {"Message": "Please upload an audio file"}
|
| 76 |
+
return process_audio(audio_file, model_name)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
# Updated CSS with better color scheme for resource links
|
| 80 |
+
css = """
|
| 81 |
+
/* Custom CSS that works with Ocean theme */
|
| 82 |
+
.sonics-header {
|
| 83 |
+
text-align: center;
|
| 84 |
+
padding: 20px;
|
| 85 |
+
margin-bottom: 20px;
|
| 86 |
+
border-radius: 10px;
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
.sonics-logo {
|
| 90 |
+
max-width: 150px;
|
| 91 |
+
border-radius: 10px;
|
| 92 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.3);
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
.sonics-title {
|
| 96 |
+
font-size: 28px;
|
| 97 |
+
margin-bottom: 10px;
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
.sonics-subtitle {
|
| 101 |
+
margin-bottom: 15px;
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
.sonics-description {
|
| 105 |
+
font-size: 16px;
|
| 106 |
+
margin: 0;
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
/* Resource links styling */
|
| 110 |
+
.resource-links {
|
| 111 |
+
display: flex;
|
| 112 |
+
justify-content: center;
|
| 113 |
+
flex-wrap: wrap;
|
| 114 |
+
gap: 8px;
|
| 115 |
+
margin-bottom: 25px;
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
.resource-link {
|
| 119 |
+
background-color: #222222;
|
| 120 |
+
color: #4aedd6;
|
| 121 |
+
border: 1px solid #333333;
|
| 122 |
+
padding: 8px 16px;
|
| 123 |
+
border-radius: 20px;
|
| 124 |
+
margin: 5px;
|
| 125 |
+
text-decoration: none;
|
| 126 |
+
display: inline-block;
|
| 127 |
+
font-weight: 500;
|
| 128 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.3);
|
| 129 |
+
transition: all 0.2s ease;
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
.resource-link:hover {
|
| 133 |
+
background-color: #333333;
|
| 134 |
+
transform: translateY(-2px);
|
| 135 |
+
box-shadow: 0 3px 6px rgba(0, 0, 0, 0.4);
|
| 136 |
+
transition: all 0.2s ease;
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
.resource-link-icon {
|
| 140 |
+
margin-right: 5px;
|
| 141 |
+
}
|
| 142 |
+
|
| 143 |
+
/* Footer styling */
|
| 144 |
+
.sonics-footer {
|
| 145 |
+
text-align: center;
|
| 146 |
+
margin-top: 30px;
|
| 147 |
+
padding: 15px;
|
| 148 |
+
}
|
| 149 |
+
"""
|
| 150 |
+
|
| 151 |
+
# Create Gradio interface
|
| 152 |
+
with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo:
|
| 153 |
+
# Title and Logo
|
| 154 |
+
gr.HTML(
|
| 155 |
+
"""
|
| 156 |
+
<div class="sonics-header">
|
| 157 |
+
<div style="display: flex; justify-content: center; margin-bottom: 20px;">
|
| 158 |
+
<img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg" class="sonics-logo">
|
| 159 |
+
</div>
|
| 160 |
+
<h1 class="sonics-title">SONICS: Synthetic Or Not - Identifying Counterfeit Songs</h1>
|
| 161 |
+
<h3 class="sonics-subtitle">ICLR 2025 [Poster]</h3>
|
| 162 |
+
<p class="sonics-description">
|
| 163 |
+
Detect if a song is real or AI-generated with our state-of-the-art models.
|
| 164 |
+
Simply upload an audio file to verify its authenticity!
|
| 165 |
+
</p>
|
| 166 |
+
</div>
|
| 167 |
+
"""
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# Resource Links - Updated with custom styling to match screenshot
|
| 171 |
+
gr.HTML(
|
| 172 |
+
"""
|
| 173 |
+
<div class="resource-links">
|
| 174 |
+
<a href="https://openreview.net/forum?id=PY7KSh29Z8" target="_blank" class="resource-link">
|
| 175 |
+
<span class="resource-link-icon">📄</span>Paper
|
| 176 |
+
</a>
|
| 177 |
+
<a href="https://huggingface.co/datasets/awsaf49/sonics" target="_blank" class="resource-link">
|
| 178 |
+
<span class="resource-link-icon">🎵</span>Dataset
|
| 179 |
+
</a>
|
| 180 |
+
<a href="https://huggingface.co/collections/awsaf49/sonics-spectttra-67bb6517b3920fd18e409013" target="_blank" class="resource-link">
|
| 181 |
+
<span class="resource-link-icon">🤖</span>Models
|
| 182 |
+
</a>
|
| 183 |
+
<a href="https://arxiv.org/abs/2408.14080" target="_blank" class="resource-link">
|
| 184 |
+
<span class="resource-link-icon">🔬</span>ArXiv
|
| 185 |
+
</a>
|
| 186 |
+
<a href="https://github.com/awsaf49/sonics" target="_blank" class="resource-link">
|
| 187 |
+
<span class="resource-link-icon">💻</span>GitHub
|
| 188 |
+
</a>
|
| 189 |
+
</div>
|
| 190 |
+
"""
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# Main Interface
|
| 194 |
+
with gr.Row(equal_height=True):
|
| 195 |
+
with gr.Column():
|
| 196 |
+
audio_input = gr.Audio(
|
| 197 |
+
label="Upload Audio File",
|
| 198 |
+
type="filepath",
|
| 199 |
+
elem_id="audio_input"
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
model_dropdown = gr.Dropdown(
|
| 203 |
+
choices=list(MODEL_IDS.keys()),
|
| 204 |
+
value="SpecTTTra-γ (5s)",
|
| 205 |
+
label="Select Model",
|
| 206 |
+
elem_id="model_dropdown"
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
submit_btn = gr.Button(
|
| 210 |
+
"✨ Analyze Audio",
|
| 211 |
+
elem_id="submit_btn",
|
| 212 |
+
variant="primary"
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
with gr.Column():
|
| 216 |
+
# Define output before using it in Examples
|
| 217 |
+
output = gr.Label(
|
| 218 |
+
label="Analysis Result",
|
| 219 |
+
num_top_classes=2,
|
| 220 |
+
elem_id="output"
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
with gr.Accordion("How It Works", open=True):
|
| 224 |
+
gr.Markdown("""
|
| 225 |
+
### The SONICS classifier
|
| 226 |
+
|
| 227 |
+
The SONICS classifier analyzes your audio to determine if it's an authentic song (human created) or generated by AI. Our models are trained on a diverse dataset of real and AI-generated songs from Suno and Udio.
|
| 228 |
+
|
| 229 |
+
### Models available:
|
| 230 |
+
- **SpecTTTra-γ**: Optimized for speed
|
| 231 |
+
- **SpecTTTra-β**: Balanced performance
|
| 232 |
+
- **SpecTTTra-α**: Highest accuracy
|
| 233 |
+
|
| 234 |
+
### Duration variants:
|
| 235 |
+
- **5s**: Analyzes a 5-second clip (faster)
|
| 236 |
+
- **120s**: Analyzes up to 2 minutes (more accurate)
|
| 237 |
+
""")
|
| 238 |
+
|
| 239 |
+
# Add Examples section after output is defined
|
| 240 |
+
with gr.Accordion("Example Audio Files", open=True):
|
| 241 |
+
gr.Examples(
|
| 242 |
+
examples=[
|
| 243 |
+
["example/real_song.mp3", "SpecTTTra-γ (5s)"],
|
| 244 |
+
["example/fake_song.mp3", "SpecTTTra-γ (5s)"],
|
| 245 |
+
],
|
| 246 |
+
inputs=[audio_input, model_dropdown],
|
| 247 |
+
outputs=[output],
|
| 248 |
+
fn=predict,
|
| 249 |
+
cache_examples=True,
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
# Footer
|
| 253 |
+
gr.HTML(
|
| 254 |
+
"""
|
| 255 |
+
<div class="sonics-footer">
|
| 256 |
+
<p>SONICS: Synthetic Or Not - Identifying Counterfeit Songs | ICLR 2025</p>
|
| 257 |
+
<p style="font-size: 12px;">For research purposes only</p>
|
| 258 |
+
</div>
|
| 259 |
+
"""
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Prediction handling
|
| 263 |
+
submit_btn.click(fn=predict, inputs=[audio_input, model_dropdown], outputs=[output])
|
| 264 |
+
|
| 265 |
+
if __name__ == "__main__":
|
| 266 |
demo.launch()
|