|
import torch.nn as nn |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch.jit import Final |
|
|
|
from timm.layers import ( |
|
Mlp, |
|
DropPath, |
|
use_fused_attn, |
|
) |
|
|
|
|
|
class Attention(nn.Module): |
|
fused_attn: Final[bool] |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
norm_layer: nn.Module = nn.LayerNorm, |
|
) -> None: |
|
super().__init__() |
|
assert dim % num_heads == 0, "dim should be divisible by num_heads" |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim**-0.5 |
|
self.fused_attn = use_fused_attn() |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, N, C = x.shape |
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(B, N, 3, self.num_heads, self.head_dim) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
q, k, v = qkv.unbind(0) |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
|
|
if self.fused_attn: |
|
x = F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
dropout_p=self.attn_drop.p if self.training else 0.0, |
|
) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
init_values: float = 1e-5, |
|
inplace: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
proj_drop: float = 0.0, |
|
attn_drop: float = 0.0, |
|
init_values: Optional[float] = None, |
|
drop_path: float = 0.0, |
|
act_layer: nn.Module = nn.GELU, |
|
norm_layer: nn.Module = nn.LayerNorm, |
|
mlp_layer: nn.Module = Mlp, |
|
) -> None: |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_norm=qk_norm, |
|
attn_drop=attn_drop, |
|
proj_drop=proj_drop, |
|
norm_layer=norm_layer, |
|
) |
|
self.ls1 = ( |
|
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
) |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim) |
|
self.mlp = mlp_layer( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
act_layer=act_layer, |
|
drop=proj_drop, |
|
) |
|
self.ls2 = ( |
|
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
) |
|
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x)))) |
|
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
""" |
|
Transformer layer, taken from timm library |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
num_heads: int, |
|
num_layers: int, |
|
mlp_ratio: float = 4.0, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
proj_drop: float = 0.0, |
|
attn_drop: float = 0.0, |
|
drop_path: float = 0.0, |
|
): |
|
super(Transformer, self).__init__() |
|
self.blocks = nn.ModuleList( |
|
[ |
|
TransformerBlock( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_norm=qk_norm, |
|
proj_drop=proj_drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
def forward(self, x): |
|
for block in self.blocks: |
|
x = block(x) |
|
return x |