awsaf49's picture
add: option for model and duration separately
efdd97c verified
raw
history blame
9.17 kB
import os
import torch
import librosa
import numpy as np
import gradio as gr
from sonics import HFAudioClassifier
# Restructured model configurations for separate selectors
MODEL_TYPES = ["SpecTTTra-α", "SpecTTTra-β", "SpecTTTra-γ"]
DURATIONS = ["5s", "120s"]
# Mapping for model IDs
def get_model_id(model_type, duration):
model_map = {
"SpecTTTra-α-5s": "awsaf49/sonics-spectttra-alpha-5s",
"SpecTTTra-β-5s": "awsaf49/sonics-spectttra-beta-5s",
"SpecTTTra-γ-5s": "awsaf49/sonics-spectttra-gamma-5s",
"SpecTTTra-α-120s": "awsaf49/sonics-spectttra-alpha-120s",
"SpecTTTra-β-120s": "awsaf49/sonics-spectttra-beta-120s",
"SpecTTTra-γ-120s": "awsaf49/sonics-spectttra-gamma-120s",
}
key = f"{model_type}-{duration}"
return model_map[key]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_cache = {}
def load_model(model_type, duration):
"""Load model if not already cached"""
model_key = f"{model_type}-{duration}"
if model_key not in model_cache:
model_id = get_model_id(model_type, duration)
model = HFAudioClassifier.from_pretrained(model_id)
model = model.to(device)
model.eval()
model_cache[model_key] = model
return model_cache[model_key]
def process_audio(audio_path, model_type, duration):
"""Process audio file and return prediction"""
try:
model = load_model(model_type, duration)
max_time = model.config.audio.max_time
# Load and process audio
audio, sr = librosa.load(audio_path, sr=16000)
chunk_samples = int(max_time * sr)
total_chunks = len(audio) // chunk_samples
middle_chunk_idx = total_chunks // 2
# Extract middle chunk
start = middle_chunk_idx * chunk_samples
end = start + chunk_samples
chunk = audio[start:end]
if len(chunk) < chunk_samples:
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
# Get prediction
with torch.no_grad():
chunk = torch.from_numpy(chunk).float().to(device)
pred = model(chunk.unsqueeze(0))
prob = torch.sigmoid(pred).cpu().numpy()[0]
real_prob = 1 - prob
fake_prob = prob
# Return formatted results
return {
"Real": float(real_prob),
"Fake": float(fake_prob)
}
except Exception as e:
return {"Error": str(e)}
def predict(audio_file, model_type, duration):
"""Gradio interface function"""
if audio_file is None:
return {"Message": "Please upload an audio file"}
return process_audio(audio_file, model_type, duration)
# Updated CSS with better color scheme for resource links
css = """
/* Custom CSS that works with Ocean theme */
.sonics-header {
text-align: center;
padding: 20px;
margin-bottom: 20px;
border-radius: 10px;
}
.sonics-logo {
max-width: 150px;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0,0,0,0.3);
}
.sonics-title {
font-size: 28px;
margin-bottom: 10px;
}
.sonics-subtitle {
margin-bottom: 15px;
}
.sonics-description {
font-size: 16px;
margin: 0;
}
/* Resource links styling */
.resource-links {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 8px;
margin-bottom: 25px;
}
.resource-link {
background-color: #222222;
color: #4aedd6;
border: 1px solid #333333;
padding: 8px 16px;
border-radius: 20px;
margin: 5px;
text-decoration: none;
display: inline-block;
font-weight: 500;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.3);
transition: all 0.2s ease;
}
.resource-link:hover {
background-color: #333333;
transform: translateY(-2px);
box-shadow: 0 3px 6px rgba(0, 0, 0, 0.4);
transition: all 0.2s ease;
}
.resource-link-icon {
margin-right: 5px;
}
/* Footer styling */
.sonics-footer {
text-align: center;
margin-top: 30px;
padding: 15px;
}
/* Selectors wrapper for side-by-side appearance */
.selectors-wrapper {
display: flex;
gap: 10px;
}
.selectors-wrapper > div {
flex: 1;
}
"""
# Create Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo:
# Title and Logo
gr.HTML(
"""
<div class="sonics-header">
<div style="display: flex; justify-content: center; margin-bottom: 20px;">
<img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg" class="sonics-logo">
</div>
<h1 class="sonics-title">SONICS: Synthetic Or Not - Identifying Counterfeit Songs</h1>
<h3 class="sonics-subtitle">ICLR 2025 [Poster]</h3>
<p class="sonics-description">
Detect if a song is real or AI-generated with our state-of-the-art models.
Simply upload an audio file to verify its authenticity!
</p>
</div>
"""
)
# Resource Links - Updated with custom styling to match screenshot
gr.HTML(
"""
<div class="resource-links">
<a href="https://openreview.net/forum?id=PY7KSh29Z8" target="_blank" class="resource-link">
<span class="resource-link-icon">📄</span>Paper
</a>
<a href="https://huggingface.co/datasets/awsaf49/sonics" target="_blank" class="resource-link">
<span class="resource-link-icon">🎵</span>Dataset
</a>
<a href="https://huggingface.co/collections/awsaf49/sonics-spectttra-67bb6517b3920fd18e409013" target="_blank" class="resource-link">
<span class="resource-link-icon">🤖</span>Models
</a>
<a href="https://arxiv.org/abs/2408.14080" target="_blank" class="resource-link">
<span class="resource-link-icon">🔬</span>ArXiv
</a>
<a href="https://github.com/awsaf49/sonics" target="_blank" class="resource-link">
<span class="resource-link-icon">💻</span>GitHub
</a>
</div>
"""
)
# Main Interface
with gr.Row(equal_height=True):
with gr.Column():
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
elem_id="audio_input"
)
# Add CSS class to create a wrapper for side-by-side dropdowns
with gr.Row(elem_classes="selectors-wrapper"):
model_dropdown = gr.Dropdown(
choices=MODEL_TYPES,
value="SpecTTTra-γ",
label="Select Model",
elem_id="model_dropdown"
)
duration_dropdown = gr.Dropdown(
choices=DURATIONS,
value="5s",
label="Select Duration",
elem_id="duration_dropdown"
)
submit_btn = gr.Button(
"✨ Analyze Audio",
elem_id="submit_btn",
variant="primary"
)
with gr.Column():
# Define output before using it in Examples
output = gr.Label(
label="Analysis Result",
num_top_classes=2,
elem_id="output"
)
with gr.Accordion("How It Works", open=True):
gr.Markdown("""
### The SONICS classifier
The SONICS classifier analyzes your audio to determine if it's an authentic song (human created) or generated by AI. Our models are trained on a diverse dataset of real and AI-generated songs from Suno and Udio.
### Models available:
- **SpecTTTra-γ**: Optimized for speed
- **SpecTTTra-β**: Balanced performance
- **SpecTTTra-α**: Highest accuracy
### Duration variants:
- **5s**: Analyzes a 5-second clip (faster)
- **120s**: Analyzes up to 2 minutes (more accurate)
""")
# Add Examples section after output is defined
with gr.Accordion("Example Audio Files", open=True):
gr.Examples(
examples=[
["example/real_song.mp3", "SpecTTTra-γ", "5s"],
["example/fake_song.mp3", "SpecTTTra-γ", "5s"],
],
inputs=[audio_input, model_dropdown, duration_dropdown],
outputs=[output],
fn=predict,
cache_examples=True,
)
# Footer
gr.HTML(
"""
<div class="sonics-footer">
<p>SONICS: Synthetic Or Not - Identifying Counterfeit Songs | ICLR 2025</p>
<p style="font-size: 12px;">For research purposes only</p>
</div>
"""
)
# Prediction handling
submit_btn.click(fn=predict, inputs=[audio_input, model_dropdown, duration_dropdown], outputs=[output])
if __name__ == "__main__":
demo.launch()