awsaf49's picture
ui updated
c4c4ffa
raw
history blame
11.2 kB
import os
import torch
import librosa
import numpy as np
import gradio as gr
from sonics import HFAudioClassifier
# Model configurations
MODEL_IDS = {
"SpecTTTra-α (5s)": "awsaf49/sonics-spectttra-alpha-5s",
"SpecTTTra-β (5s)": "awsaf49/sonics-spectttra-beta-5s",
"SpecTTTra-γ (5s)": "awsaf49/sonics-spectttra-gamma-5s",
"SpecTTTra-α (120s)": "awsaf49/sonics-spectttra-alpha-120s",
"SpecTTTra-β (120s)": "awsaf49/sonics-spectttra-beta-120s",
"SpecTTTra-γ (120s)": "awsaf49/sonics-spectttra-gamma-120s",
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_cache = {}
def load_model(model_name):
"""Load model if not already cached"""
if model_name not in model_cache:
model_id = MODEL_IDS[model_name]
model = HFAudioClassifier.from_pretrained(model_id)
model = model.to(device)
model.eval()
model_cache[model_name] = model
return model_cache[model_name]
def process_audio(audio_path, model_name):
"""Process audio file and return prediction"""
try:
model = load_model(model_name)
max_time = model.config.audio.max_time
# Load and process audio
audio, sr = librosa.load(audio_path, sr=16000)
chunk_samples = int(max_time * sr)
total_chunks = len(audio) // chunk_samples
middle_chunk_idx = total_chunks // 2
# Extract middle chunk
start = middle_chunk_idx * chunk_samples
end = start + chunk_samples
chunk = audio[start:end]
if len(chunk) < chunk_samples:
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
# Get prediction
with torch.no_grad():
chunk = torch.from_numpy(chunk).float().to(device)
pred = model(chunk.unsqueeze(0))
prob = torch.sigmoid(pred).cpu().numpy()[0]
real_prob = 1 - prob
fake_prob = prob
# Return formatted results
return {
"Real": float(real_prob),
"Fake": float(fake_prob)
}
except Exception as e:
return {"Error": str(e)}
def predict(audio_file, model_name):
"""Gradio interface function"""
if audio_file is None:
return {"Message": "Please upload an audio file"}
return process_audio(audio_file, model_name)
# Custom CSS for styling - Dark theme with black background
css = """
:root {
--primary-bg: #000000;
--secondary-bg: #111111;
--panel-bg: #1e1e1e;
--text-color: #ffffff;
--text-secondary: #bbbbbb;
--border-color: #333333;
--analyze-button-color: #ffa500;
--analyze-button-hover: #ff8c00;
--accent-color: #4a78e5;
}
body, .gradio-container {
background-color: var(--primary-bg) !important;
color: var(--text-color) !important;
}
.footer, .header-container, .accordion-content {
background-color: var(--secondary-bg) !important;
color: var(--text-color) !important;
}
/* Headers and text */
h1, h2, h3 {
color: var(--text-color) !important;
}
p {
color: var(--text-secondary) !important;
}
/* Button styling */
button#submit_btn {
background-color: var(--analyze-button-color) !important;
color: white !important;
border: none !important;
font-weight: bold !important;
padding: 10px 20px !important;
font-size: 16px !important;
border-radius: 8px !important;
}
button#submit_btn:hover {
background-color: var(--analyze-button-hover) !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.5) !important;
transform: translateY(-2px) !important;
transition: all 0.2s ease !important;
}
/* Panel backgrounds */
.gr-panel, .gr-box, .gr-form, .gr-input-label, .gr-input {
background-color: var(--panel-bg) !important;
border: 1px solid var(--border-color) !important;
border-radius: 8px !important;
color: var(--text-color) !important;
}
/* Results panel */
#output {
background-color: var(--panel-bg) !important;
border-radius: 8px !important;
padding: 10px !important;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.3) !important;
border: 1px solid var(--border-color) !important;
}
/* Resource links */
.resource-link {
background-color: var(--secondary-bg) !important;
color: var(--accent-color) !important;
border: 1px solid var(--border-color) !important;
padding: 8px 16px !important;
border-radius: 20px !important;
margin: 5px !important;
text-decoration: none !important;
display: inline-block !important;
font-weight: 500 !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.3) !important;
}
.resource-link:hover {
transform: translateY(-2px) !important;
box-shadow: 0 3px 6px rgba(0, 0, 0, 0.4) !important;
transition: all 0.2s ease !important;
background-color: #222222 !important;
}
.header-container {
padding: 20px !important;
border-radius: 10px !important;
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.3) !important;
margin-bottom: 20px !important;
border: 1px solid var(--border-color) !important;
}
/* Accordion styling */
.gr-accordion {
border: 1px solid var(--border-color) !important;
border-radius: 8px !important;
overflow: hidden !important;
background-color: var(--panel-bg) !important;
}
.gr-accordion-header {
background-color: var(--secondary-bg) !important;
padding: 10px 15px !important;
font-weight: 600 !important;
color: var(--text-color) !important;
}
/* Audio player */
.audio-player {
background-color: var(--panel-bg) !important;
border-radius: 8px !important;
overflow: hidden !important;
}
/* Dropdown & Input fields */
select, input, .gr-dropdown {
background-color: var(--panel-bg) !important;
color: var(--text-color) !important;
border: 1px solid var(--border-color) !important;
}
/* Labels */
label, .gr-label {
color: var(--text-secondary) !important;
}
/* Footer styling */
.footer {
border-top: 1px solid var(--border-color) !important;
margin-top: 30px !important;
padding: 15px !important;
}
"""
# Create Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Default()) as demo:
# Title and Logo
gr.HTML(
"""
<div class="header-container">
<div style="display: flex; justify-content: center; margin-bottom: 20px;">
<img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg"
style="max-width: 150px; border-radius: 10px; box-shadow: 0 4px 8px rgba(0,0,0,0.3);">
</div>
<h1 style="text-align: center; font-size: 28px; margin-bottom: 10px; color: #ffffff;">SONICS: Synthetic Or Not - Identifying Counterfeit Songs</h1>
<h3 style="text-align: center; color: #bbbbbb; margin-bottom: 15px;">ICLR 2025 [Poster]</h3>
<p style="text-align: center; font-size: 16px; margin: 0; color: #aaaaaa;">
Detect if a song is real or AI-generated with our state-of-the-art models.
Simply upload an audio file to verify its authenticity!
</p>
</div>
"""
)
# Resource Links - Simplified
gr.HTML(
"""
<div style="display: flex; justify-content: center; flex-wrap: wrap; gap: 8px; margin-bottom: 25px;">
<a href="https://openreview.net/forum?id=PY7KSh29Z8" target="_blank" class="resource-link">
📄 Paper
</a>
<a href="https://huggingface.co/datasets/awsaf49/sonics" target="_blank" class="resource-link">
🎵 Dataset
</a>
<a href="https://huggingface.co/collections/awsaf49/sonics-spectttra-67bb6517b3920fd18e409013" target="_blank" class="resource-link">
🤖 Models
</a>
<a href="https://arxiv.org/abs/2408.14080" target="_blank" class="resource-link">
🔬 ArXiv
</a>
<a href="https://github.com/awsaf49/sonics" target="_blank" class="resource-link">
💻 GitHub
</a>
</div>
"""
)
# Main Interface
with gr.Row(equal_height=True):
with gr.Column():
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
elem_id="audio_input",
elem_classes="audio-player"
)
model_dropdown = gr.Dropdown(
choices=list(MODEL_IDS.keys()),
value="SpecTTTra-γ (5s)",
label="Select Model",
elem_id="model_dropdown"
)
submit_btn = gr.Button(
"✨ Analyze Audio",
elem_id="submit_btn"
)
with gr.Column():
# Define output before using it in Examples
output = gr.Label(
label="Analysis Result",
num_top_classes=2,
elem_id="output"
)
with gr.Accordion("How It Works", open=True):
gr.Markdown("""
## The SONICS classifier
The SONICS classifier analyzes your audio to determine if it's an authentic song (human created) or generated by AI. Our models are trained on a diverse dataset of real and AI-generated songs from Suno and Udio.
### Models available:
- **SpecTTTra-α**: Optimized for speed
- **SpecTTTra-β**: Balanced performance
- **SpecTTTra-γ**: Highest accuracy
### Duration variants:
- **5s**: Analyzes a 5-second clip (faster)
- **120s**: Analyzes up to 2 minutes (more accurate)
""")
# Add Examples section after output is defined
with gr.Accordion("Example Audio Files", open=True):
gr.Examples(
examples=[
["demo/real_song.mp3", "SpecTTTra-γ (5s)"],
["demo/fake_song.mp3", "SpecTTTra-γ (5s)"],
],
inputs=[audio_input, model_dropdown],
outputs=[output],
fn=predict,
cache_examples=True,
)
# Footer
gr.HTML(
"""
<div class="footer" style="text-align: center;">
<p style="color: #bbbbbb; font-size: 14px;">SONICS: Synthetic Or Not - Identifying Counterfeit Songs | ICLR 2025</p>
<p style="color: #777777; font-size: 12px;">For research purposes only</p>
</div>
"""
)
# Prediction handling
submit_btn.click(fn=predict, inputs=[audio_input, model_dropdown], outputs=[output])
if __name__ == "__main__":
# Use dark theme as base and then apply custom CSS on top
demo.launch()