|
import torch
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
|
|
try:
|
|
from torch.amp import autocast
|
|
|
|
torch_amp_new = True
|
|
except:
|
|
from torch.cuda.amp import autocast
|
|
|
|
torch_amp_new = False
|
|
|
|
from torchaudio.transforms import AmplitudeToDB, MelSpectrogram
|
|
|
|
|
|
class FeatureExtractor(nn.Module):
|
|
def __init__(
|
|
self,
|
|
cfg,
|
|
):
|
|
"""
|
|
Feature extraction module.
|
|
|
|
Args:
|
|
params (dict): Parameters for the spectrogram.
|
|
aug_config (dict, optional): Configuration for data augmentation. Defaults to None.
|
|
top_db (float, optional): Threshold for computing the amplitude to dB. Defaults to None.
|
|
norm (str, optional): Normalization method. Defaults to "min_max".
|
|
"""
|
|
super().__init__()
|
|
|
|
self.audio2melspec = MelSpectrogram(
|
|
n_fft=cfg.melspec.n_fft,
|
|
hop_length=cfg.melspec.hop_length,
|
|
win_length=cfg.melspec.win_length,
|
|
n_mels=cfg.melspec.n_mels,
|
|
sample_rate=cfg.audio.sample_rate,
|
|
f_min=cfg.melspec.f_min,
|
|
f_max=cfg.melspec.f_max,
|
|
power=cfg.melspec.power,
|
|
)
|
|
self.amplitude_to_db = AmplitudeToDB(top_db=cfg.melspec.top_db)
|
|
|
|
if cfg.melspec.norm == "mean_std":
|
|
self.normalizer = MeanStdNorm()
|
|
elif cfg.melspec.norm == "min_max":
|
|
self.normalizer = MinMaxNorm()
|
|
elif cfg.melspec.norm == "simple":
|
|
self.normalizer = SimpleNorm()
|
|
else:
|
|
self.normalizer = nn.Identity()
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass of the feature extractor.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input audio data.
|
|
|
|
Returns:
|
|
torch.Tensor: Extracted features.
|
|
"""
|
|
|
|
with (
|
|
autocast("cuda", enabled=False)
|
|
if torch_amp_new
|
|
else autocast(enabled=False)
|
|
):
|
|
melspec = self.audio2melspec(x.float())
|
|
melspec = self.amplitude_to_db(melspec)
|
|
melspec = self.normalizer(melspec)
|
|
|
|
return melspec
|
|
|
|
|
|
class MinMaxNorm(nn.Module):
|
|
def __init__(self, eps=1e-6):
|
|
"""
|
|
Module for performing min-max normalization on input data.
|
|
|
|
Args:
|
|
eps (float, optional): Small value to avoid division by zero. Defaults to 1e-6.
|
|
"""
|
|
super().__init__()
|
|
self.eps = eps
|
|
|
|
def forward(self, X):
|
|
"""
|
|
Forward pass of the min-max normalization module.
|
|
|
|
Args:
|
|
X (torch.Tensor): Input data.
|
|
|
|
Returns:
|
|
torch.Tensor: Normalized data.
|
|
"""
|
|
min_ = torch.amax(X, dim=(1, 2), keepdim=True)
|
|
max_ = torch.amin(X, dim=(1, 2), keepdim=True)
|
|
return (X - min_) / (max_ - min_ + self.eps)
|
|
|
|
|
|
class SimpleNorm(nn.Module):
|
|
def __init__(self):
|
|
"""
|
|
Module for performing simple normalization on input data.
|
|
"""
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass of the simple normalization module.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input data.
|
|
|
|
Returns:
|
|
torch.Tensor: Normalized data.
|
|
"""
|
|
return (x - 40) / 80
|
|
|
|
|
|
class MeanStdNorm(nn.Module):
|
|
def __init__(self, eps=1e-6):
|
|
"""
|
|
Module for performing mean and standard deviation normalization on input data.
|
|
|
|
Args:
|
|
eps (float, optional): Small value to avoid division by zero. Defaults to 1e-6.
|
|
"""
|
|
super().__init__()
|
|
self.eps = eps
|
|
|
|
def forward(self, X):
|
|
"""
|
|
Forward pass of the mean and standard deviation normalization module.
|
|
|
|
Args:
|
|
X (torch.Tensor): Input data.
|
|
|
|
Returns:
|
|
torch.Tensor: Normalized data.
|
|
"""
|
|
mean = X.mean((1, 2), keepdim=True)
|
|
std = X.reshape(X.size(0), -1).std(1, keepdim=True).unsqueeze(-1)
|
|
return (X - mean) / (std + self.eps)
|
|
|