|
import os
|
|
import math
|
|
import gradio as gr
|
|
import torch
|
|
import librosa
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
from sonics import HFAudioClassifier
|
|
|
|
|
|
|
|
MODEL_IDS = {
|
|
"SpecTTTra-α (5s)": "awsaf49/sonics-spectttra-alpha-5s",
|
|
"SpecTTTra-β (5s)": "awsaf49/sonics-spectttra-beta-5s",
|
|
"SpecTTTra-γ (5s)": "awsaf49/sonics-spectttra-gamma-5s",
|
|
"SpecTTTra-α (120s)": "awsaf49/sonics-spectttra-alpha-120s",
|
|
"SpecTTTra-β (120s)": "awsaf49/sonics-spectttra-beta-120s",
|
|
"SpecTTTra-γ (120s)": "awsaf49/sonics-spectttra-gamma-120s",
|
|
}
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model_cache = {}
|
|
|
|
|
|
def load_model(model_name):
|
|
"""Load model if not already cached"""
|
|
if model_name not in model_cache:
|
|
model_id = MODEL_IDS[model_name]
|
|
model = HFAudioClassifier.from_pretrained(model_id)
|
|
model = model.to(device)
|
|
model.eval()
|
|
model_cache[model_name] = model
|
|
return model_cache[model_name]
|
|
|
|
|
|
def process_audio(audio_path, model_name):
|
|
"""Process audio file and return prediction"""
|
|
try:
|
|
|
|
model = load_model(model_name)
|
|
|
|
|
|
max_time = model.config.audio.max_time
|
|
|
|
|
|
audio, sr = librosa.load(audio_path, sr=16000)
|
|
duration = len(audio) / sr
|
|
|
|
|
|
chunk_samples = int(max_time * sr)
|
|
total_chunks = len(audio) // chunk_samples
|
|
middle_chunk_idx = total_chunks // 2
|
|
|
|
|
|
start = middle_chunk_idx * chunk_samples
|
|
end = start + chunk_samples
|
|
chunk = audio[start:end]
|
|
|
|
|
|
if len(chunk) < chunk_samples:
|
|
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
|
|
|
|
|
|
with torch.no_grad():
|
|
chunk = torch.from_numpy(chunk).float().to(device)
|
|
pred = model(chunk.unsqueeze(0))
|
|
prob = torch.sigmoid(pred).cpu().numpy()[0]
|
|
|
|
|
|
output = {"Real": 1 - prob, "Fake": prob}
|
|
|
|
return output
|
|
|
|
except Exception as e:
|
|
return {
|
|
"Duration": "Error",
|
|
"Prediction": f"Error: {str(e)}",
|
|
"Confidence": "N/A",
|
|
}
|
|
|
|
|
|
def predict(audio_file, model_name):
|
|
"""Gradio interface function"""
|
|
if audio_file is None:
|
|
return {
|
|
"Duration": "No file",
|
|
"Prediction": "Please upload an audio file",
|
|
"Confidence": "N/A",
|
|
}
|
|
|
|
return process_audio(audio_file, model_name)
|
|
|
|
|
|
|
|
css = """
|
|
.heading {
|
|
text-align: center;
|
|
margin-bottom: 2rem;
|
|
}
|
|
.logo {
|
|
max-width: 250px;
|
|
margin: 0 auto;
|
|
display: block;
|
|
}
|
|
"""
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
gr.HTML(
|
|
"""
|
|
<div class="heading">
|
|
<img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg" class="logo">
|
|
<h1>SONICS: Synthetic Or Not - Identifying Counterfeit Songs</h1>
|
|
<h3><span style="color:red;"><b>ICLR 2025 [Poster]</b></span></h3>
|
|
</div>
|
|
"""
|
|
)
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
audio_input = gr.Audio(label="Upload Audio", type="filepath")
|
|
model_dropdown = gr.Dropdown(
|
|
choices=list(MODEL_IDS.keys()),
|
|
value="SpecTTTra-γ (5s)",
|
|
label="Select Model",
|
|
)
|
|
submit_btn = gr.Button("Predict")
|
|
|
|
with gr.Column():
|
|
output = gr.Label(label="Result", num_top_classes=2)
|
|
|
|
submit_btn.click(fn=predict, inputs=[audio_input, model_dropdown], outputs=[output])
|
|
|
|
gr.Markdown(
|
|
"""
|
|
## Resources
|
|
- 📄 [Paper](https://openreview.net/forum?id=PY7KSh29Z8)
|
|
- 🎵 [Dataset](https://huggingface.co/datasets/awsaf49/sonics)
|
|
- 🔬 [ArXiv](https://arxiv.org/abs/2408.14080)
|
|
- 💻 [GitHub](https://github.com/awsaf49/sonics)
|
|
"""
|
|
)
|
|
|
|
demo.launch()
|
|
|