File size: 5,098 Bytes
3f50570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch.nn as nn
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.jit import Final

from timm.layers import (
    Mlp,
    DropPath,
    use_fused_attn,
)


class Attention(nn.Module):
    fused_attn: Final[bool]

    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        norm_layer: nn.Module = nn.LayerNorm,
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim**-0.5
        self.fused_attn = use_fused_attn()

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, self.head_dim)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)

        if self.fused_attn:
            x = F.scaled_dot_product_attention(
                q,
                k,
                v,
                dropout_p=self.attn_drop.p if self.training else 0.0,
            )
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = attn @ v

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class LayerScale(nn.Module):
    def __init__(
        self,
        dim: int,
        init_values: float = 1e-5,
        inplace: bool = False,
    ) -> None:
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x.mul_(self.gamma) if self.inplace else x * self.gamma


class TransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        proj_drop: float = 0.0,
        attn_drop: float = 0.0,
        init_values: Optional[float] = None,
        drop_path: float = 0.0,
        act_layer: nn.Module = nn.GELU,
        norm_layer: nn.Module = nn.LayerNorm,
        mlp_layer: nn.Module = Mlp,
    ) -> None:
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            norm_layer=norm_layer,
        )
        self.ls1 = (
            LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        )
        self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim)
        self.mlp = mlp_layer(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.ls2 = (
            LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        )
        self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
        return x


class Transformer(nn.Module):
    """
    Transformer layer, taken from timm library
    """

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        num_layers: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        proj_drop: float = 0.0,
        attn_drop: float = 0.0,
        drop_path: float = 0.0,
    ):
        super(Transformer, self).__init__()
        self.blocks = nn.ModuleList(
            [
                TransformerBlock(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_norm=qk_norm,
                    proj_drop=proj_drop,
                    attn_drop=attn_drop,
                    drop_path=drop_path,
                )
                for _ in range(num_layers)
            ]
        )

    def forward(self, x):
        for block in self.blocks:
            x = block(x)
        return x