File size: 4,122 Bytes
3f50570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import numpy as np
import torch.nn as nn

try:
    from torch.amp import autocast

    torch_amp_new = True
except:
    from torch.cuda.amp import autocast

    torch_amp_new = False

from torchaudio.transforms import AmplitudeToDB, MelSpectrogram


class FeatureExtractor(nn.Module):
    def __init__(

        self,

        cfg,

    ):
        """

        Feature extraction module.



        Args:

            params (dict): Parameters for the spectrogram.

            aug_config (dict, optional): Configuration for data augmentation. Defaults to None.

            top_db (float, optional): Threshold for computing the amplitude to dB. Defaults to None.

            norm (str, optional): Normalization method. Defaults to "min_max".

        """
        super().__init__()

        self.audio2melspec = MelSpectrogram(
            n_fft=cfg.melspec.n_fft,
            hop_length=cfg.melspec.hop_length,
            win_length=cfg.melspec.win_length,
            n_mels=cfg.melspec.n_mels,
            sample_rate=cfg.audio.sample_rate,
            f_min=cfg.melspec.f_min,
            f_max=cfg.melspec.f_max,
            power=cfg.melspec.power,
        )
        self.amplitude_to_db = AmplitudeToDB(top_db=cfg.melspec.top_db)

        if cfg.melspec.norm == "mean_std":
            self.normalizer = MeanStdNorm()
        elif cfg.melspec.norm == "min_max":
            self.normalizer = MinMaxNorm()
        elif cfg.melspec.norm == "simple":
            self.normalizer = SimpleNorm()
        else:
            self.normalizer = nn.Identity()

    def forward(self, x):
        """

        Forward pass of the feature extractor.



        Args:

            x (torch.Tensor): Input audio data.



        Returns:

            torch.Tensor: Extracted features.

        """

        with (
            autocast("cuda", enabled=False)
            if torch_amp_new
            else autocast(enabled=False)
        ):
            melspec = self.audio2melspec(x.float())
            melspec = self.amplitude_to_db(melspec)
            melspec = self.normalizer(melspec)

        return melspec


class MinMaxNorm(nn.Module):
    def __init__(self, eps=1e-6):
        """

        Module for performing min-max normalization on input data.



        Args:

            eps (float, optional): Small value to avoid division by zero. Defaults to 1e-6.

        """
        super().__init__()
        self.eps = eps

    def forward(self, X):
        """

        Forward pass of the min-max normalization module.



        Args:

            X (torch.Tensor): Input data.



        Returns:

            torch.Tensor: Normalized data.

        """
        min_ = torch.amax(X, dim=(1, 2), keepdim=True)
        max_ = torch.amin(X, dim=(1, 2), keepdim=True)
        return (X - min_) / (max_ - min_ + self.eps)


class SimpleNorm(nn.Module):
    def __init__(self):
        """

        Module for performing simple normalization on input data.

        """
        super().__init__()

    def forward(self, x):
        """

        Forward pass of the simple normalization module.



        Args:

            x (torch.Tensor): Input data.



        Returns:

            torch.Tensor: Normalized data.

        """
        return (x - 40) / 80


class MeanStdNorm(nn.Module):
    def __init__(self, eps=1e-6):
        """

        Module for performing mean and standard deviation normalization on input data.



        Args:

            eps (float, optional): Small value to avoid division by zero. Defaults to 1e-6.

        """
        super().__init__()
        self.eps = eps

    def forward(self, X):
        """

        Forward pass of the mean and standard deviation normalization module.



        Args:

            X (torch.Tensor): Input data.



        Returns:

            torch.Tensor: Normalized data.

        """
        mean = X.mean((1, 2), keepdim=True)
        std = X.reshape(X.size(0), -1).std(1, keepdim=True).unsqueeze(-1)
        return (X - mean) / (std + self.eps)