File size: 1,272 Bytes
3f50570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torch.nn as nn


class SinusoidPositionalEncoding(nn.Module):
    def __init__(self, token_dim, max_len=5000):
        super(SinusoidPositionalEncoding, self).__init__()
        pe = torch.zeros(max_len, token_dim)  # shape: (max_len, token_dim)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(
            1
        )  # shape: (max_len, 1)
        div_term = torch.exp(
            torch.arange(0, token_dim, 2).float()
            * (-torch.log(torch.tensor(10000.0)) / token_dim)
        )  # shape: (token_dim // 2)
        pe[:, 0::2] = torch.sin(position * div_term)  # shape: (max_len, token_dim // 2)
        pe[:, 1::2] = torch.cos(position * div_term)  # shape: (max_len, token_dim // 2)
        pe = pe.unsqueeze(0)  # shape: (1, max_len, token_dim)
        self.register_buffer("pe", pe)

    def forward(self, x):
        x = x + self.pe[:, : x.size(1), :]  # shape: (batch_size, seq_len, token_dim)
        return x


class LearnedPositionalEncoding(nn.Module):
    def __init__(self, token_dim, num_tokens):
        super(LearnedPositionalEncoding, self).__init__()
        self.pe = nn.Parameter(torch.randn(1, num_tokens, token_dim) * 0.02)

    def forward(self, x):
        x = x + self.pe
        return x