Spaces:
Running
Running
Commit
·
eb016d8
1
Parent(s):
88ebdc5
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
# from IPython.display import display
|
| 6 |
+
import base64
|
| 7 |
+
|
| 8 |
+
# helper decoder
|
| 9 |
+
def decode_base64_image(image_string):
|
| 10 |
+
base64_image = base64.b64decode(image_string)
|
| 11 |
+
buffer = BytesIO(base64_image)
|
| 12 |
+
return Image.open(buffer)
|
| 13 |
+
|
| 14 |
+
# display PIL images as grid
|
| 15 |
+
def display_image(image=None,width=500,height=500):
|
| 16 |
+
img = image.resize((width, height))
|
| 17 |
+
return img
|
| 18 |
+
|
| 19 |
+
# API Gateway endpoint URL
|
| 20 |
+
api_url = 'https://a02q342s5b.execute-api.us-east-2.amazonaws.com/reinvent-demo-inf2-sm-20231114'
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# ===========
|
| 24 |
+
# Define Streamlit UI elements
|
| 25 |
+
st.title('Stable Diffusion XL with Refiner Image Generation')
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
prompt = st.text_area("Enter your prompt:",
|
| 30 |
+
"Manatee astronaut in space, sci-fi, future, cold color palette, muted colors, detailed, 8k")
|
| 31 |
+
|
| 32 |
+
negative_prompt = st.text_area("Enter your negative prompt:",
|
| 33 |
+
"anime, cartoon, graphic, text, painting, crayon, graphite, abstract glitch, blurry")
|
| 34 |
+
|
| 35 |
+
seed = st.number_input("Random seed (set to same value to generate same image, if other inputs are the same, change to generate a different image for same inputs)", value=None, placeholder="Type a number...")
|
| 36 |
+
# seed = 555
|
| 37 |
+
|
| 38 |
+
num_inference_steps = st.slider("Number of Inference Steps (more steps might improve quality, with diminishing marginal returns. 30-50 seems best, but your mileage may vary.)",
|
| 39 |
+
min_value=1,
|
| 40 |
+
max_value=100,
|
| 41 |
+
value=20)
|
| 42 |
+
denoising_start = st.slider("Denoising Start (when to stop modifying the overall image and start refining the details)",
|
| 43 |
+
min_value=0.0,
|
| 44 |
+
max_value=1.0,
|
| 45 |
+
value=0.8)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if st.button('Generate Image'):
|
| 50 |
+
with st.spinner(f'Generating Image with {num_inference_steps} iterations, beginning to refine around iteration {int(num_inference_steps * denoising_start)}...'):
|
| 51 |
+
# ===============
|
| 52 |
+
# Example input data
|
| 53 |
+
prompt_input = {
|
| 54 |
+
"prompt": prompt,
|
| 55 |
+
"parameters": {
|
| 56 |
+
"num_inference_steps": num_inference_steps,
|
| 57 |
+
# "seed": seed,
|
| 58 |
+
"negative_prompt": negative_prompt
|
| 59 |
+
# "denoising_start": denoising_start
|
| 60 |
+
}
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
# Make API request
|
| 64 |
+
response = requests.post(api_url, json=prompt_input)
|
| 65 |
+
|
| 66 |
+
# Process and display the response
|
| 67 |
+
if response.status_code == 200:
|
| 68 |
+
result = response.json()
|
| 69 |
+
# st.success(f"Prediction result: {result}")
|
| 70 |
+
image = display_image(decode_base64_image(result["generated_images"][0]))
|
| 71 |
+
st.header("SDXL Base + Refiner")
|
| 72 |
+
st.image(image,
|
| 73 |
+
caption=f"SDXL Base + Refiner, {num_inference_steps} iterations, beginning to refine around iteration {int(num_inference_steps * denoising_start)}")
|
| 74 |
+
else:
|
| 75 |
+
st.error(f"Error: {response.text}")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|