|  | """This script defines the visualizer for Deep3DFaceRecon_pytorch | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import os | 
					
						
						|  | import sys | 
					
						
						|  | import ntpath | 
					
						
						|  | import time | 
					
						
						|  | from . import util, html | 
					
						
						|  | from subprocess import Popen, PIPE | 
					
						
						|  | from torch.utils.tensorboard import SummaryWriter | 
					
						
						|  |  | 
					
						
						|  | def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): | 
					
						
						|  | """Save images to the disk. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) | 
					
						
						|  | visuals (OrderedDict)    -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs | 
					
						
						|  | image_path (str)         -- the string is used to create image paths | 
					
						
						|  | aspect_ratio (float)     -- the aspect ratio of saved images | 
					
						
						|  | width (int)              -- the images will be resized to width x width | 
					
						
						|  |  | 
					
						
						|  | This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. | 
					
						
						|  | """ | 
					
						
						|  | image_dir = webpage.get_image_dir() | 
					
						
						|  | short_path = ntpath.basename(image_path[0]) | 
					
						
						|  | name = os.path.splitext(short_path)[0] | 
					
						
						|  |  | 
					
						
						|  | webpage.add_header(name) | 
					
						
						|  | ims, txts, links = [], [], [] | 
					
						
						|  |  | 
					
						
						|  | for label, im_data in visuals.items(): | 
					
						
						|  | im = util.tensor2im(im_data) | 
					
						
						|  | image_name = '%s/%s.png' % (label, name) | 
					
						
						|  | os.makedirs(os.path.join(image_dir, label), exist_ok=True) | 
					
						
						|  | save_path = os.path.join(image_dir, image_name) | 
					
						
						|  | util.save_image(im, save_path, aspect_ratio=aspect_ratio) | 
					
						
						|  | ims.append(image_name) | 
					
						
						|  | txts.append(label) | 
					
						
						|  | links.append(image_name) | 
					
						
						|  | webpage.add_images(ims, txts, links, width=width) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Visualizer(): | 
					
						
						|  | """This class includes several functions that can display/save images and print/save logging information. | 
					
						
						|  |  | 
					
						
						|  | It uses a Python library tensprboardX for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, opt): | 
					
						
						|  | """Initialize the Visualizer class | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | opt -- stores all the experiment flags; needs to be a subclass of BaseOptions | 
					
						
						|  | Step 1: Cache the training/test options | 
					
						
						|  | Step 2: create a tensorboard writer | 
					
						
						|  | Step 3: create an HTML object for saveing HTML filters | 
					
						
						|  | Step 4: create a logging file to store training losses | 
					
						
						|  | """ | 
					
						
						|  | self.opt = opt | 
					
						
						|  | self.use_html = opt.isTrain and not opt.no_html | 
					
						
						|  | self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, 'logs', opt.name)) | 
					
						
						|  | self.win_size = opt.display_winsize | 
					
						
						|  | self.name = opt.name | 
					
						
						|  | self.saved = False | 
					
						
						|  | if self.use_html: | 
					
						
						|  | self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') | 
					
						
						|  | self.img_dir = os.path.join(self.web_dir, 'images') | 
					
						
						|  | print('create web directory %s...' % self.web_dir) | 
					
						
						|  | util.mkdirs([self.web_dir, self.img_dir]) | 
					
						
						|  |  | 
					
						
						|  | self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') | 
					
						
						|  | with open(self.log_name, "a") as log_file: | 
					
						
						|  | now = time.strftime("%c") | 
					
						
						|  | log_file.write('================ Training Loss (%s) ================\n' % now) | 
					
						
						|  |  | 
					
						
						|  | def reset(self): | 
					
						
						|  | """Reset the self.saved status""" | 
					
						
						|  | self.saved = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def display_current_results(self, visuals, total_iters, epoch, save_result): | 
					
						
						|  | """Display current results on tensorboad; save current results to an HTML file. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | visuals (OrderedDict) - - dictionary of images to display or save | 
					
						
						|  | total_iters (int) -- total iterations | 
					
						
						|  | epoch (int) - - the current epoch | 
					
						
						|  | save_result (bool) - - if save the current results to an HTML file | 
					
						
						|  | """ | 
					
						
						|  | for label, image in visuals.items(): | 
					
						
						|  | self.writer.add_image(label, util.tensor2im(image), total_iters, dataformats='HWC') | 
					
						
						|  |  | 
					
						
						|  | if self.use_html and (save_result or not self.saved): | 
					
						
						|  | self.saved = True | 
					
						
						|  |  | 
					
						
						|  | for label, image in visuals.items(): | 
					
						
						|  | image_numpy = util.tensor2im(image) | 
					
						
						|  | img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) | 
					
						
						|  | util.save_image(image_numpy, img_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=0) | 
					
						
						|  | for n in range(epoch, 0, -1): | 
					
						
						|  | webpage.add_header('epoch [%d]' % n) | 
					
						
						|  | ims, txts, links = [], [], [] | 
					
						
						|  |  | 
					
						
						|  | for label, image_numpy in visuals.items(): | 
					
						
						|  | image_numpy = util.tensor2im(image) | 
					
						
						|  | img_path = 'epoch%.3d_%s.png' % (n, label) | 
					
						
						|  | ims.append(img_path) | 
					
						
						|  | txts.append(label) | 
					
						
						|  | links.append(img_path) | 
					
						
						|  | webpage.add_images(ims, txts, links, width=self.win_size) | 
					
						
						|  | webpage.save() | 
					
						
						|  |  | 
					
						
						|  | def plot_current_losses(self, total_iters, losses): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for name, value in losses.items(): | 
					
						
						|  | self.writer.add_scalar(name, value, total_iters) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def print_current_losses(self, epoch, iters, losses, t_comp, t_data): | 
					
						
						|  | """print current losses on console; also save the losses to the disk | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | epoch (int) -- current epoch | 
					
						
						|  | iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) | 
					
						
						|  | losses (OrderedDict) -- training losses stored in the format of (name, float) pairs | 
					
						
						|  | t_comp (float) -- computational time per data point (normalized by batch_size) | 
					
						
						|  | t_data (float) -- data loading time per data point (normalized by batch_size) | 
					
						
						|  | """ | 
					
						
						|  | message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data) | 
					
						
						|  | for k, v in losses.items(): | 
					
						
						|  | message += '%s: %.3f ' % (k, v) | 
					
						
						|  |  | 
					
						
						|  | print(message) | 
					
						
						|  | with open(self.log_name, "a") as log_file: | 
					
						
						|  | log_file.write('%s\n' % message) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MyVisualizer: | 
					
						
						|  | def __init__(self, opt): | 
					
						
						|  | """Initialize the Visualizer class | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | opt -- stores all the experiment flags; needs to be a subclass of BaseOptions | 
					
						
						|  | Step 1: Cache the training/test options | 
					
						
						|  | Step 2: create a tensorboard writer | 
					
						
						|  | Step 3: create an HTML object for saveing HTML filters | 
					
						
						|  | Step 4: create a logging file to store training losses | 
					
						
						|  | """ | 
					
						
						|  | self.opt = opt | 
					
						
						|  | self.name = opt.name | 
					
						
						|  | self.img_dir = os.path.join(opt.checkpoints_dir, opt.name, 'results') | 
					
						
						|  |  | 
					
						
						|  | if opt.phase != 'test': | 
					
						
						|  | self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, opt.name, 'logs')) | 
					
						
						|  |  | 
					
						
						|  | self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') | 
					
						
						|  | with open(self.log_name, "a") as log_file: | 
					
						
						|  | now = time.strftime("%c") | 
					
						
						|  | log_file.write('================ Training Loss (%s) ================\n' % now) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def display_current_results(self, visuals, total_iters, epoch, dataset='train', save_results=False, count=0, name=None, | 
					
						
						|  | add_image=True): | 
					
						
						|  | """Display current results on tensorboad; save current results to an HTML file. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | visuals (OrderedDict) - - dictionary of images to display or save | 
					
						
						|  | total_iters (int) -- total iterations | 
					
						
						|  | epoch (int) - - the current epoch | 
					
						
						|  | dataset (str) - - 'train' or 'val' or 'test' | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for label, image in visuals.items(): | 
					
						
						|  | for i in range(image.shape[0]): | 
					
						
						|  | image_numpy = util.tensor2im(image[i]) | 
					
						
						|  | if add_image: | 
					
						
						|  | self.writer.add_image(label + '%s_%02d'%(dataset, i + count), | 
					
						
						|  | image_numpy, total_iters, dataformats='HWC') | 
					
						
						|  |  | 
					
						
						|  | if save_results: | 
					
						
						|  | save_path = os.path.join(self.img_dir, dataset, 'epoch_%s_%06d'%(epoch, total_iters)) | 
					
						
						|  | if not os.path.isdir(save_path): | 
					
						
						|  | os.makedirs(save_path) | 
					
						
						|  |  | 
					
						
						|  | if name is not None: | 
					
						
						|  | img_path = os.path.join(save_path, '%s.png' % name) | 
					
						
						|  | else: | 
					
						
						|  | img_path = os.path.join(save_path, '%s_%03d.png' % (label, i + count)) | 
					
						
						|  | util.save_image(image_numpy, img_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def plot_current_losses(self, total_iters, losses, dataset='train'): | 
					
						
						|  | for name, value in losses.items(): | 
					
						
						|  | self.writer.add_scalar(name + '/%s'%dataset, value, total_iters) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def print_current_losses(self, epoch, iters, losses, t_comp, t_data, dataset='train'): | 
					
						
						|  | """print current losses on console; also save the losses to the disk | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | epoch (int) -- current epoch | 
					
						
						|  | iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) | 
					
						
						|  | losses (OrderedDict) -- training losses stored in the format of (name, float) pairs | 
					
						
						|  | t_comp (float) -- computational time per data point (normalized by batch_size) | 
					
						
						|  | t_data (float) -- data loading time per data point (normalized by batch_size) | 
					
						
						|  | """ | 
					
						
						|  | message = '(dataset: %s, epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % ( | 
					
						
						|  | dataset, epoch, iters, t_comp, t_data) | 
					
						
						|  | for k, v in losses.items(): | 
					
						
						|  | message += '%s: %.3f ' % (k, v) | 
					
						
						|  |  | 
					
						
						|  | print(message) | 
					
						
						|  | with open(self.log_name, "a") as log_file: | 
					
						
						|  | log_file.write('%s\n' % message) | 
					
						
						|  |  |