Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -3,35 +3,28 @@ import os | |
| 3 | 
             
            import gradio as gr
         | 
| 4 | 
             
            from PIL import Image
         | 
| 5 | 
             
            from diffusers import (
         | 
| 6 | 
            -
                 | 
| 7 | 
             
                StableDiffusionControlNetImg2ImgPipeline,
         | 
| 8 | 
             
                ControlNetModel,
         | 
| 9 | 
            -
                DDIMScheduler,
         | 
| 10 | 
            -
                DPMSolverMultistepScheduler,
         | 
| 11 | 
            -
                DEISMultistepScheduler,
         | 
| 12 | 
            -
                HeunDiscreteScheduler,
         | 
| 13 | 
            -
                EulerDiscreteScheduler,
         | 
| 14 | 
             
            )
         | 
| 15 |  | 
| 16 | 
            -
            #  | 
| 17 | 
            -
             | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
            # Load the pipeline in float16 precision
         | 
| 22 | 
            -
            pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
         | 
| 23 | 
             
                "SG161222/Realistic_Vision_V2.0",
         | 
| 24 | 
             
                controlnet=controlnet,
         | 
| 25 | 
             
                safety_checker=None,
         | 
| 26 | 
             
                torch_dtype=torch.float16,
         | 
| 27 | 
             
            ).to("cuda")
         | 
| 28 | 
            -
            pipe.enable_xformers_memory_efficient_attention()
         | 
| 29 |  | 
|  | |
| 30 | 
             
            SAMPLER_MAP = {
         | 
| 31 | 
             
                "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
         | 
| 32 | 
             
                "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
         | 
| 33 | 
             
            }
         | 
| 34 |  | 
|  | |
| 35 | 
             
            def inference(
         | 
| 36 | 
             
                control_image: Image.Image,
         | 
| 37 | 
             
                prompt: str,
         | 
| @@ -45,16 +38,15 @@ def inference( | |
| 45 | 
             
                if prompt is None or prompt == "":
         | 
| 46 | 
             
                    raise gr.Error("Prompt is required")
         | 
| 47 |  | 
| 48 | 
            -
                # Generate  | 
| 49 | 
            -
                init_image =  | 
| 50 | 
            -
             | 
| 51 | 
            -
                 | 
| 52 | 
            -
                
         | 
| 53 | 
             
                control_image = control_image.resize((512, 512))
         | 
| 54 | 
            -
                 | 
| 55 | 
             
                generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
         | 
| 56 | 
            -
             | 
| 57 | 
            -
                out =  | 
| 58 | 
             
                    prompt=prompt,
         | 
| 59 | 
             
                    negative_prompt=negative_prompt,
         | 
| 60 | 
             
                    image=init_image,
         | 
|  | |
| 3 | 
             
            import gradio as gr
         | 
| 4 | 
             
            from PIL import Image
         | 
| 5 | 
             
            from diffusers import (
         | 
| 6 | 
            +
                DiffusionPipeline,
         | 
| 7 | 
             
                StableDiffusionControlNetImg2ImgPipeline,
         | 
| 8 | 
             
                ControlNetModel,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 9 | 
             
            )
         | 
| 10 |  | 
| 11 | 
            +
            # Initialize both pipelines
         | 
| 12 | 
            +
            init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda")
         | 
| 13 | 
            +
            controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
         | 
| 14 | 
            +
            main_pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
         | 
|  | |
|  | |
|  | |
| 15 | 
             
                "SG161222/Realistic_Vision_V2.0",
         | 
| 16 | 
             
                controlnet=controlnet,
         | 
| 17 | 
             
                safety_checker=None,
         | 
| 18 | 
             
                torch_dtype=torch.float16,
         | 
| 19 | 
             
            ).to("cuda")
         | 
|  | |
| 20 |  | 
| 21 | 
            +
            # Sampler map
         | 
| 22 | 
             
            SAMPLER_MAP = {
         | 
| 23 | 
             
                "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
         | 
| 24 | 
             
                "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
         | 
| 25 | 
             
            }
         | 
| 26 |  | 
| 27 | 
            +
            # Inference function
         | 
| 28 | 
             
            def inference(
         | 
| 29 | 
             
                control_image: Image.Image,
         | 
| 30 | 
             
                prompt: str,
         | 
|  | |
| 38 | 
             
                if prompt is None or prompt == "":
         | 
| 39 | 
             
                    raise gr.Error("Prompt is required")
         | 
| 40 |  | 
| 41 | 
            +
                # Generate the initial image
         | 
| 42 | 
            +
                init_image = init_pipe(prompt).images[0]
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                # Rest of your existing code
         | 
|  | |
| 45 | 
             
                control_image = control_image.resize((512, 512))
         | 
| 46 | 
            +
                main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
         | 
| 47 | 
             
                generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                out = main_pipe(
         | 
| 50 | 
             
                    prompt=prompt,
         | 
| 51 | 
             
                    negative_prompt=negative_prompt,
         | 
| 52 | 
             
                    image=init_image,
         | 
