Spaces:
Build error
Build error
Upload 16 files (#23)
Browse files- Upload 16 files (26a27349113d5597933a40955d7fd0212a032e35)
- app.py +2 -2
- utils/retriever.py +184 -71
app.py
CHANGED
|
@@ -91,7 +91,7 @@ with st.sidebar:
|
|
| 91 |
["Single-Company", "Compare Companies"],
|
| 92 |
)
|
| 93 |
|
| 94 |
-
|
| 95 |
corpus, bm25 = get_bm25_model(data)
|
| 96 |
|
| 97 |
tokenized_query = preprocess_text(query_text).split()
|
|
@@ -382,7 +382,7 @@ with st.sidebar:
|
|
| 382 |
)
|
| 383 |
)
|
| 384 |
|
| 385 |
-
|
| 386 |
|
| 387 |
if document_type == "Single-Document":
|
| 388 |
if encoder_model in ["Hybrid SGPT - SPLADE", "Hybrid Instructor - SPLADE"]:
|
|
|
|
| 91 |
["Single-Company", "Compare Companies"],
|
| 92 |
)
|
| 93 |
|
| 94 |
+
data = get_data()
|
| 95 |
corpus, bm25 = get_bm25_model(data)
|
| 96 |
|
| 97 |
tokenized_query = preprocess_text(query_text).split()
|
|
|
|
| 382 |
)
|
| 383 |
)
|
| 384 |
|
| 385 |
+
|
| 386 |
|
| 387 |
if document_type == "Single-Document":
|
| 388 |
if encoder_model in ["Hybrid SGPT - SPLADE", "Hybrid Instructor - SPLADE"]:
|
utils/retriever.py
CHANGED
|
@@ -32,20 +32,188 @@ def query_pinecone(
|
|
| 32 |
if year == "All":
|
| 33 |
if quarter == "All":
|
| 34 |
if indices != None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
xc = index.query(
|
| 36 |
vector=dense_vec,
|
| 37 |
top_k=top_k,
|
| 38 |
filter={
|
| 39 |
-
"Year":
|
| 40 |
-
|
| 41 |
-
int("2020"),
|
| 42 |
-
int("2019"),
|
| 43 |
-
int("2018"),
|
| 44 |
-
int("2017"),
|
| 45 |
-
int("2016"),
|
| 46 |
-
]
|
| 47 |
-
},
|
| 48 |
-
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
| 49 |
"Ticker": {"$eq": ticker},
|
| 50 |
"QA_Flag": {"$eq": participant},
|
| 51 |
"Keywords": {"$in": keywords},
|
|
@@ -58,42 +226,25 @@ def query_pinecone(
|
|
| 58 |
vector=dense_vec,
|
| 59 |
top_k=top_k,
|
| 60 |
filter={
|
| 61 |
-
"Year":
|
| 62 |
-
|
| 63 |
-
int("2020"),
|
| 64 |
-
int("2019"),
|
| 65 |
-
int("2018"),
|
| 66 |
-
int("2017"),
|
| 67 |
-
int("2016"),
|
| 68 |
-
]
|
| 69 |
-
},
|
| 70 |
-
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
| 71 |
"Ticker": {"$eq": ticker},
|
| 72 |
"QA_Flag": {"$eq": participant},
|
| 73 |
-
"
|
| 74 |
},
|
| 75 |
include_metadata=True,
|
| 76 |
)
|
| 77 |
else:
|
| 78 |
-
if
|
| 79 |
xc = index.query(
|
| 80 |
vector=dense_vec,
|
| 81 |
top_k=top_k,
|
| 82 |
filter={
|
| 83 |
-
"Year":
|
| 84 |
-
"$in": [
|
| 85 |
-
int("2020"),
|
| 86 |
-
int("2019"),
|
| 87 |
-
int("2018"),
|
| 88 |
-
int("2017"),
|
| 89 |
-
int("2016"),
|
| 90 |
-
]
|
| 91 |
-
},
|
| 92 |
"Quarter": {"$eq": quarter},
|
| 93 |
"Ticker": {"$eq": ticker},
|
| 94 |
"QA_Flag": {"$eq": participant},
|
| 95 |
"Keywords": {"$in": keywords},
|
| 96 |
-
"index": {"$in": indices},
|
| 97 |
},
|
| 98 |
include_metadata=True,
|
| 99 |
)
|
|
@@ -102,51 +253,13 @@ def query_pinecone(
|
|
| 102 |
vector=dense_vec,
|
| 103 |
top_k=top_k,
|
| 104 |
filter={
|
| 105 |
-
"Year":
|
| 106 |
-
"$in": [
|
| 107 |
-
int("2020"),
|
| 108 |
-
int("2019"),
|
| 109 |
-
int("2018"),
|
| 110 |
-
int("2017"),
|
| 111 |
-
int("2016"),
|
| 112 |
-
]
|
| 113 |
-
},
|
| 114 |
"Quarter": {"$eq": quarter},
|
| 115 |
"Ticker": {"$eq": ticker},
|
| 116 |
"QA_Flag": {"$eq": participant},
|
| 117 |
-
"Keywords": {"$in": keywords},
|
| 118 |
},
|
| 119 |
include_metadata=True,
|
| 120 |
)
|
| 121 |
-
else:
|
| 122 |
-
# search pinecone index for context passage with the answer
|
| 123 |
-
if indices != None:
|
| 124 |
-
xc = index.query(
|
| 125 |
-
vector=dense_vec,
|
| 126 |
-
top_k=top_k,
|
| 127 |
-
filter={
|
| 128 |
-
"Year": int(year),
|
| 129 |
-
"Quarter": {"$eq": quarter},
|
| 130 |
-
"Ticker": {"$eq": ticker},
|
| 131 |
-
"QA_Flag": {"$eq": participant},
|
| 132 |
-
"Keywords": {"$in": keywords},
|
| 133 |
-
"index": {"$in": indices},
|
| 134 |
-
},
|
| 135 |
-
include_metadata=True,
|
| 136 |
-
)
|
| 137 |
-
else:
|
| 138 |
-
xc = index.query(
|
| 139 |
-
vector=dense_vec,
|
| 140 |
-
top_k=top_k,
|
| 141 |
-
filter={
|
| 142 |
-
"Year": int(year),
|
| 143 |
-
"Quarter": {"$eq": quarter},
|
| 144 |
-
"Ticker": {"$eq": ticker},
|
| 145 |
-
"QA_Flag": {"$eq": participant},
|
| 146 |
-
"Keywords": {"$in": keywords},
|
| 147 |
-
},
|
| 148 |
-
include_metadata=True,
|
| 149 |
-
)
|
| 150 |
# filter the context passages based on the score threshold
|
| 151 |
filtered_matches = []
|
| 152 |
for match in xc["matches"]:
|
|
|
|
| 32 |
if year == "All":
|
| 33 |
if quarter == "All":
|
| 34 |
if indices != None:
|
| 35 |
+
if keywords != None:
|
| 36 |
+
xc = index.query(
|
| 37 |
+
vector=dense_vec,
|
| 38 |
+
top_k=top_k,
|
| 39 |
+
filter={
|
| 40 |
+
"Year": {
|
| 41 |
+
"$in": [
|
| 42 |
+
int("2020"),
|
| 43 |
+
int("2019"),
|
| 44 |
+
int("2018"),
|
| 45 |
+
int("2017"),
|
| 46 |
+
int("2016"),
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
| 50 |
+
"Ticker": {"$eq": ticker},
|
| 51 |
+
"QA_Flag": {"$eq": participant},
|
| 52 |
+
"Keywords": {"$in": keywords},
|
| 53 |
+
"index": {"$in": indices},
|
| 54 |
+
},
|
| 55 |
+
include_metadata=True,
|
| 56 |
+
)
|
| 57 |
+
else:
|
| 58 |
+
xc = index.query(
|
| 59 |
+
vector=dense_vec,
|
| 60 |
+
top_k=top_k,
|
| 61 |
+
filter={
|
| 62 |
+
"Year": {
|
| 63 |
+
"$in": [
|
| 64 |
+
int("2020"),
|
| 65 |
+
int("2019"),
|
| 66 |
+
int("2018"),
|
| 67 |
+
int("2017"),
|
| 68 |
+
int("2016"),
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
| 72 |
+
"Ticker": {"$eq": ticker},
|
| 73 |
+
"QA_Flag": {"$eq": participant},
|
| 74 |
+
"index": {"$in": indices},
|
| 75 |
+
},
|
| 76 |
+
include_metadata=True,
|
| 77 |
+
)
|
| 78 |
+
else:
|
| 79 |
+
if keywords != None:
|
| 80 |
+
xc = index.query(
|
| 81 |
+
vector=dense_vec,
|
| 82 |
+
top_k=top_k,
|
| 83 |
+
filter={
|
| 84 |
+
"Year": {
|
| 85 |
+
"$in": [
|
| 86 |
+
int("2020"),
|
| 87 |
+
int("2019"),
|
| 88 |
+
int("2018"),
|
| 89 |
+
int("2017"),
|
| 90 |
+
int("2016"),
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
| 94 |
+
"Ticker": {"$eq": ticker},
|
| 95 |
+
"QA_Flag": {"$eq": participant},
|
| 96 |
+
"Keywords": {"$in": keywords},
|
| 97 |
+
},
|
| 98 |
+
include_metadata=True,
|
| 99 |
+
)
|
| 100 |
+
else:
|
| 101 |
+
xc = index.query(
|
| 102 |
+
vector=dense_vec,
|
| 103 |
+
top_k=top_k,
|
| 104 |
+
filter={
|
| 105 |
+
"Year": {
|
| 106 |
+
"$in": [
|
| 107 |
+
int("2020"),
|
| 108 |
+
int("2019"),
|
| 109 |
+
int("2018"),
|
| 110 |
+
int("2017"),
|
| 111 |
+
int("2016"),
|
| 112 |
+
]
|
| 113 |
+
},
|
| 114 |
+
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
| 115 |
+
"Ticker": {"$eq": ticker},
|
| 116 |
+
"QA_Flag": {"$eq": participant},
|
| 117 |
+
},
|
| 118 |
+
include_metadata=True,
|
| 119 |
+
)
|
| 120 |
+
else:
|
| 121 |
+
if indices != None:
|
| 122 |
+
if keywords != None:
|
| 123 |
+
xc = index.query(
|
| 124 |
+
vector=dense_vec,
|
| 125 |
+
top_k=top_k,
|
| 126 |
+
filter={
|
| 127 |
+
"Year": {
|
| 128 |
+
"$in": [
|
| 129 |
+
int("2020"),
|
| 130 |
+
int("2019"),
|
| 131 |
+
int("2018"),
|
| 132 |
+
int("2017"),
|
| 133 |
+
int("2016"),
|
| 134 |
+
]
|
| 135 |
+
},
|
| 136 |
+
"Quarter": {"$eq": quarter},
|
| 137 |
+
"Ticker": {"$eq": ticker},
|
| 138 |
+
"QA_Flag": {"$eq": participant},
|
| 139 |
+
"Keywords": {"$in": keywords},
|
| 140 |
+
"index": {"$in": indices},
|
| 141 |
+
},
|
| 142 |
+
include_metadata=True,
|
| 143 |
+
)
|
| 144 |
+
else:
|
| 145 |
+
xc = index.query(
|
| 146 |
+
vector=dense_vec,
|
| 147 |
+
top_k=top_k,
|
| 148 |
+
filter={
|
| 149 |
+
"Year": {
|
| 150 |
+
"$in": [
|
| 151 |
+
int("2020"),
|
| 152 |
+
int("2019"),
|
| 153 |
+
int("2018"),
|
| 154 |
+
int("2017"),
|
| 155 |
+
int("2016"),
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
"Quarter": {"$eq": quarter},
|
| 159 |
+
"Ticker": {"$eq": ticker},
|
| 160 |
+
"QA_Flag": {"$eq": participant},
|
| 161 |
+
"index": {"$in": indices},
|
| 162 |
+
},
|
| 163 |
+
include_metadata=True,
|
| 164 |
+
)
|
| 165 |
+
else:
|
| 166 |
+
if keywords != None:
|
| 167 |
+
xc = index.query(
|
| 168 |
+
vector=dense_vec,
|
| 169 |
+
top_k=top_k,
|
| 170 |
+
filter={
|
| 171 |
+
"Year": {
|
| 172 |
+
"$in": [
|
| 173 |
+
int("2020"),
|
| 174 |
+
int("2019"),
|
| 175 |
+
int("2018"),
|
| 176 |
+
int("2017"),
|
| 177 |
+
int("2016"),
|
| 178 |
+
]
|
| 179 |
+
},
|
| 180 |
+
"Quarter": {"$eq": quarter},
|
| 181 |
+
"Ticker": {"$eq": ticker},
|
| 182 |
+
"QA_Flag": {"$eq": participant},
|
| 183 |
+
"Keywords": {"$in": keywords},
|
| 184 |
+
},
|
| 185 |
+
include_metadata=True,
|
| 186 |
+
)
|
| 187 |
+
else:
|
| 188 |
+
xc = index.query(
|
| 189 |
+
vector=dense_vec,
|
| 190 |
+
top_k=top_k,
|
| 191 |
+
filter={
|
| 192 |
+
"Year": {
|
| 193 |
+
"$in": [
|
| 194 |
+
int("2020"),
|
| 195 |
+
int("2019"),
|
| 196 |
+
int("2018"),
|
| 197 |
+
int("2017"),
|
| 198 |
+
int("2016"),
|
| 199 |
+
]
|
| 200 |
+
},
|
| 201 |
+
"Quarter": {"$eq": quarter},
|
| 202 |
+
"Ticker": {"$eq": ticker},
|
| 203 |
+
"QA_Flag": {"$eq": participant},
|
| 204 |
+
},
|
| 205 |
+
include_metadata=True,
|
| 206 |
+
)
|
| 207 |
+
else:
|
| 208 |
+
# search pinecone index for context passage with the answer
|
| 209 |
+
if indices != None:
|
| 210 |
+
if keywords != None:
|
| 211 |
xc = index.query(
|
| 212 |
vector=dense_vec,
|
| 213 |
top_k=top_k,
|
| 214 |
filter={
|
| 215 |
+
"Year": int(year),
|
| 216 |
+
"Quarter": {"$eq": quarter},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
"Ticker": {"$eq": ticker},
|
| 218 |
"QA_Flag": {"$eq": participant},
|
| 219 |
"Keywords": {"$in": keywords},
|
|
|
|
| 226 |
vector=dense_vec,
|
| 227 |
top_k=top_k,
|
| 228 |
filter={
|
| 229 |
+
"Year": int(year),
|
| 230 |
+
"Quarter": {"$eq": quarter},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
"Ticker": {"$eq": ticker},
|
| 232 |
"QA_Flag": {"$eq": participant},
|
| 233 |
+
"index": {"$in": indices},
|
| 234 |
},
|
| 235 |
include_metadata=True,
|
| 236 |
)
|
| 237 |
else:
|
| 238 |
+
if keywords != None:
|
| 239 |
xc = index.query(
|
| 240 |
vector=dense_vec,
|
| 241 |
top_k=top_k,
|
| 242 |
filter={
|
| 243 |
+
"Year": int(year),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
"Quarter": {"$eq": quarter},
|
| 245 |
"Ticker": {"$eq": ticker},
|
| 246 |
"QA_Flag": {"$eq": participant},
|
| 247 |
"Keywords": {"$in": keywords},
|
|
|
|
| 248 |
},
|
| 249 |
include_metadata=True,
|
| 250 |
)
|
|
|
|
| 253 |
vector=dense_vec,
|
| 254 |
top_k=top_k,
|
| 255 |
filter={
|
| 256 |
+
"Year": int(year),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
"Quarter": {"$eq": quarter},
|
| 258 |
"Ticker": {"$eq": ticker},
|
| 259 |
"QA_Flag": {"$eq": participant},
|
|
|
|
| 260 |
},
|
| 261 |
include_metadata=True,
|
| 262 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
# filter the context passages based on the score threshold
|
| 264 |
filtered_matches = []
|
| 265 |
for match in xc["matches"]:
|