#!/usr/bin/env python3
import os
import shutil
import glob
import base64
import streamlit as st
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset, DataLoader
import csv
import time
from dataclasses import dataclass
from typing import Optional
import zipfile

# Page Configuration
st.set_page_config(
    page_title="SFT Model Builder ๐Ÿš€",
    page_icon="๐Ÿค–",
    layout="wide",
    initial_sidebar_state="expanded",
)

# Meta class for model configuration
class ModelMeta(type):
    def __new__(cls, name, bases, attrs):
        attrs['registry'] = {}
        return super().__new__(cls, name, bases, attrs)

# Model Configuration Class
@dataclass
class ModelConfig(metaclass=ModelMeta):
    name: str
    base_model: str
    size: str
    domain: Optional[str] = None
    
    def __init_subclass__(cls):
        ModelConfig.registry[cls.__name__] = cls

    @property
    def model_path(self):
        return f"models/{self.name}"

# Custom Dataset for SFT
class SFTDataset(Dataset):
    def __init__(self, data, tokenizer, max_length=128):
        self.data = data
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        prompt = self.data[idx]["prompt"]
        response = self.data[idx]["response"]
        input_text = f"{prompt} {response}"
        encoding = self.tokenizer(
            input_text,
            max_length=self.max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt"
        )
        return {
            "input_ids": encoding["input_ids"].squeeze(),
            "attention_mask": encoding["attention_mask"].squeeze(),
            "labels": encoding["input_ids"].squeeze()
        }

# Model Builder Class
class ModelBuilder:
    def __init__(self):
        self.config = None
        self.model = None
        self.tokenizer = None
        self.sft_data = None

    def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
        """Load a model from a path with an optional config"""
        with st.spinner("Loading model... โณ"):
            self.model = AutoModelForCausalLM.from_pretrained(model_path)
            self.tokenizer = AutoTokenizer.from_pretrained(model_path)
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
            if config:
                self.config = config
        st.success("Model loaded! โœ…")
        return self

    def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
        """Perform Supervised Fine-Tuning with CSV data"""
        self.sft_data = []
        with open(csv_path, "r") as f:
            reader = csv.DictReader(f)
            for row in reader:
                self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})

        dataset = SFTDataset(self.sft_data, self.tokenizer)
        dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
        optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)

        self.model.train()
        for epoch in range(epochs):
            with st.spinner(f"Training epoch {epoch + 1}/{epochs}... โš™๏ธ"):
                total_loss = 0
                for batch in dataloader:
                    optimizer.zero_grad()
                    input_ids = batch["input_ids"].to(self.model.device)
                    attention_mask = batch["attention_mask"].to(self.model.device)
                    labels = batch["labels"].to(self.model.device)
                    outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
                    loss = outputs.loss
                    loss.backward()
                    optimizer.step()
                    total_loss += loss.item()
                st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
        st.success("SFT Fine-tuning completed! ๐ŸŽ‰")
        return self

    def save_model(self, path: str):
        """Save the fine-tuned model"""
        with st.spinner("Saving model... ๐Ÿ’พ"):
            os.makedirs(os.path.dirname(path), exist_ok=True)
            self.model.save_pretrained(path)
            self.tokenizer.save_pretrained(path)
        st.success(f"Model saved at {path}! โœ…")

    def evaluate(self, prompt: str):
        """Evaluate the model with a prompt"""
        self.model.eval()
        with torch.no_grad():
            inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
            outputs = self.model.generate(**inputs, max_new_tokens=50)
            return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

# Utility Functions
def get_download_link(file_path, mime_type="text/plain", label="Download"):
    """Generate a download link for a file."""
    with open(file_path, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} ๐Ÿ“ฅ</a>'

def zip_directory(directory_path, zip_path):
    """Create a zip file from a directory."""
    with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
        for root, _, files in os.walk(directory_path):
            for file in files:
                file_path = os.path.join(root, file)
                arcname = os.path.relpath(file_path, os.path.dirname(directory_path))
                zipf.write(file_path, arcname)

def get_model_files():
    """List all saved model directories."""
    return [d for d in glob.glob("models/*") if os.path.isdir(d)]

# Main App
st.title("SFT Model Builder ๐Ÿค–๐Ÿš€")

# Sidebar for Model Management
st.sidebar.header("Model Management ๐Ÿ—‚๏ธ")
model_dirs = get_model_files()
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)

if selected_model != "None" and st.sidebar.button("Load Model ๐Ÿ“‚"):
    if 'builder' not in st.session_state:
        st.session_state['builder'] = ModelBuilder()
    config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general")
    st.session_state['builder'].load_model(selected_model, config)
    st.session_state['model_loaded'] = True
    st.rerun()

# Main UI with Tabs
tab1, tab2, tab3 = st.tabs(["Build New Model ๐ŸŒฑ", "Fine-Tune Model ๐Ÿ”ง", "Test Model ๐Ÿงช"])

with tab1:
    st.header("Build New Model ๐ŸŒฑ")
    base_model = st.selectbox(
        "Select Base Model",
        ["distilgpt2", "gpt2", "EleutherAI/pythia-70m"],
        help="Choose a small model to start with"
    )
    model_name = st.text_input("Model Name", f"new-model-{int(time.time())}")
    domain = st.text_input("Target Domain", "general")

    if st.button("Download Model โฌ‡๏ธ"):
        config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain)
        builder = ModelBuilder()
        builder.load_model(base_model, config)
        builder.save_model(config.model_path)
        st.session_state['builder'] = builder
        st.session_state['model_loaded'] = True
        st.success(f"Model downloaded and saved to {config.model_path}! ๐ŸŽ‰")
        st.rerun()

with tab2:
    st.header("Fine-Tune Model ๐Ÿ”ง")
    if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
        st.warning("Please download or load a model first! โš ๏ธ")
    else:
        # Generate Sample CSV
        if st.button("Generate Sample CSV ๐Ÿ“"):
            sample_data = [
                {"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human intelligence in machines."},
                {"prompt": "Explain machine learning", "response": "Machine learning is a subset of AI where models learn from data."},
                {"prompt": "What is a neural network?", "response": "A neural network is a model inspired by the human brain."},
            ]
            csv_path = f"sft_data_{int(time.time())}.csv"
            with open(csv_path, "w", newline="") as f:
                writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
                writer.writeheader()
                writer.writerows(sample_data)
            st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
            st.success(f"Sample CSV generated as {csv_path}! โœ…")

        # Upload CSV and Fine-Tune
        uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
        if uploaded_csv and st.button("Fine-Tune with Uploaded CSV ๐Ÿ”„"):
            csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
            with open(csv_path, "wb") as f:
                f.write(uploaded_csv.read())
            new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
            new_config = ModelConfig(
                name=new_model_name,
                base_model=st.session_state['builder'].config.base_model,
                size="small",
                domain=st.session_state['builder'].config.domain
            )
            st.session_state['builder'].config = new_config
            with st.status("Fine-tuning model... โณ", expanded=True) as status:
                st.session_state['builder'].fine_tune_sft(csv_path)
                st.session_state['builder'].save_model(new_config.model_path)
                status.update(label="Fine-tuning completed! ๐ŸŽ‰", state="complete")
            
            # Create a zip file of the model directory
            zip_path = f"{new_config.model_path}.zip"
            zip_directory(new_config.model_path, zip_path)
            st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Model"), unsafe_allow_html=True)
            st.rerun()

with tab3:
    st.header("Test Model ๐Ÿงช")
    if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
        st.warning("Please download or load a model first! โš ๏ธ")
    else:
        if st.session_state['builder'].sft_data:
            st.write("Testing with SFT Data:")
            for item in st.session_state['builder'].sft_data[:3]:
                prompt = item["prompt"]
                expected = item["response"]
                generated = st.session_state['builder'].evaluate(prompt)
                st.write(f"**Prompt**: {prompt}")
                st.write(f"**Expected**: {expected}")
                st.write(f"**Generated**: {generated}")
                st.write("---")

        test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
        if st.button("Run Test โ–ถ๏ธ"):
            result = st.session_state['builder'].evaluate(test_prompt)
            st.write(f"**Generated Response**: {result}")

        # Export Model Files
        if st.button("Export Model Files ๐Ÿ“ฆ"):
            config = st.session_state['builder'].config
            app_code = f"""
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")

st.title("SFT Model Demo")
input_text = st.text_area("Enter prompt")
if st.button("Generate"):
    inputs = tokenizer(input_text, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=50)
    st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
"""
            with open("sft_app.py", "w") as f:
                f.write(app_code)
            reqs = "streamlit\ntorch\ntransformers\n"
            with open("sft_requirements.txt", "w") as f:
                f.write(reqs)
            readme = f"""
# SFT Model Demo

## How to run
1. Install requirements: `pip install -r sft_requirements.txt`
2. Run the app: `streamlit run sft_app.py`
3. Input a prompt and click "Generate".
"""
            with open("sft_README.md", "w") as f:
                f.write(readme)
            
            st.markdown(get_download_link("sft_app.py", "text/plain", "Download App"), unsafe_allow_html=True)
            st.markdown(get_download_link("sft_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True)
            st.markdown(get_download_link("sft_README.md", "text/markdown", "Download README"), unsafe_allow_html=True)
            st.success("Model files exported! โœ…")