#!/usr/bin/env python3 import os import shutil import glob import base64 import streamlit as st import pandas as pd import torch from transformers import AutoModelForCausalLM, AutoTokenizer from torch.utils.data import Dataset, DataLoader import csv import time from dataclasses import dataclass from typing import Optional, Tuple import zipfile import math from PIL import Image import random import logging # Set up logging for feedback logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Page Configuration with Humor st.set_page_config( page_title="SFT Tiny Titans πŸš€", page_icon="πŸ€–", layout="wide", initial_sidebar_state="expanded", menu_items={ 'Get Help': 'https://huggingface.co/awacke1', 'Report a bug': 'https://huggingface.co/spaces/awacke1', 'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! 🌌" } ) # Model Configuration Class @dataclass class ModelConfig: name: str base_model: str size: str domain: Optional[str] = None @property def model_path(self): return f"models/{self.name}" # Custom Dataset for SFT class SFTDataset(Dataset): def __init__(self, data, tokenizer, max_length=128): self.data = data self.tokenizer = tokenizer self.max_length = max_length def __len__(self): return len(self.data) def __getitem__(self, idx): prompt = self.data[idx]["prompt"] response = self.data[idx]["response"] full_text = f"{prompt} {response}" full_encoding = self.tokenizer( full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt" ) prompt_encoding = self.tokenizer( prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt" ) input_ids = full_encoding["input_ids"].squeeze() attention_mask = full_encoding["attention_mask"].squeeze() labels = input_ids.clone() prompt_len = prompt_encoding["input_ids"].shape[1] if prompt_len < self.max_length: labels[:prompt_len] = -100 return { "input_ids": input_ids, "attention_mask": attention_mask, "labels": labels } # Model Builder Class with Easter Egg Jokes class ModelBuilder: def __init__(self): self.config = None self.model = None self.tokenizer = None self.sft_data = None self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! πŸ˜‚", "Training complete! Time for a binary coffee break. β˜•"] def load_model(self, model_path: str, config: Optional[ModelConfig] = None): with st.spinner(f"Loading {model_path}... ⏳ (Patience, young padawan!)"): self.model = AutoModelForCausalLM.from_pretrained(model_path) self.tokenizer = AutoTokenizer.from_pretrained(model_path) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token if config: self.config = config st.success(f"Model loaded! πŸŽ‰ {random.choice(self.jokes)}") return self def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): self.sft_data = [] with open(csv_path, "r") as f: reader = csv.DictReader(f) for row in reader: self.sft_data.append({"prompt": row["prompt"], "response": row["response"]}) dataset = SFTDataset(self.sft_data, self.tokenizer) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) self.model.train() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model.to(device) for epoch in range(epochs): with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βš™οΈ (The AI is lifting weights!)"): total_loss = 0 for batch in dataloader: optimizer.zero_grad() input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) labels = batch["labels"].to(device) assert input_ids.shape[0] == labels.shape[0], f"Batch size mismatch: input_ids {input_ids.shape}, labels {labels.shape}" outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) loss = outputs.loss loss.backward() optimizer.step() total_loss += loss.item() st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") st.success(f"SFT Fine-tuning completed! πŸŽ‰ {random.choice(self.jokes)}") return self def save_model(self, path: str): with st.spinner("Saving model... πŸ’Ύ (Packing the AI’s suitcase!)"): os.makedirs(os.path.dirname(path), exist_ok=True) self.model.save_pretrained(path) self.tokenizer.save_pretrained(path) st.success(f"Model saved at {path}! βœ… May the force be with it.") def evaluate(self, prompt: str, status_container=None): """Evaluate with feedback""" self.model.eval() if status_container: status_container.write("Preparing to evaluate... 🧠 (Titan’s warming up its circuits!)") logger.info(f"Evaluating prompt: {prompt}") try: with torch.no_grad(): inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) if status_container: status_container.write(f"Tokenized input shape: {inputs['input_ids'].shape} πŸ“") outputs = self.model.generate( **inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7 ) if status_container: status_container.write("Generation complete! Decoding response... πŸ—£") result = self.tokenizer.decode(outputs[0], skip_special_tokens=True) logger.info(f"Generated response: {result}") return result except Exception as e: logger.error(f"Evaluation error: {str(e)}") if status_container: status_container.error(f"Oops! Something broke: {str(e)} πŸ’₯ (Titan tripped over a wire!)") return f"Error: {str(e)}" # Utility Functions with Wit def get_download_link(file_path, mime_type="text/plain", label="Download"): with open(file_path, 'rb') as f: data = f.read() b64 = base64.b64encode(data).decode() return f'{label} πŸ“₯ (Grab it before it runs away!)' def zip_directory(directory_path, zip_path): with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, _, files in os.walk(directory_path): for file in files: file_path = os.path.join(root, file) arcname = os.path.relpath(file_path, os.path.dirname(directory_path)) zipf.write(file_path, arcname) def get_model_files(): return [d for d in glob.glob("models/*") if os.path.isdir(d)] def get_gallery_files(file_types): files = [] for ext in file_types: files.extend(glob.glob(f"*.{ext}")) return sorted(files) # Cargo Travel Time Tool def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float: def to_radians(degrees: float) -> float: return degrees * (math.pi / 180) lat1, lon1 = map(to_radians, origin_coords) lat2, lon2 = map(to_radians, destination_coords) EARTH_RADIUS_KM = 6371.0 dlon = lon2 - lon1 dlat = lat2 - lat1 a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2) c = 2 * math.asin(math.sqrt(a)) distance = EARTH_RADIUS_KM * c actual_distance = distance * 1.1 flight_time = (actual_distance / cruising_speed_kmh) + 1.0 return round(flight_time, 2) # Main App st.title("SFT Tiny Titans πŸš€ (Small but Mighty!)") # Sidebar with Galleries st.sidebar.header("Galleries & Shenanigans 🎨") st.sidebar.subheader("Image Gallery πŸ“Έ") img_files = get_gallery_files(["png", "jpg", "jpeg"]) if img_files: img_cols = st.sidebar.slider("Image Columns πŸ“Έ", 1, 5, 3) cols = st.sidebar.columns(img_cols) for idx, img_file in enumerate(img_files[:img_cols * 2]): with cols[idx % img_cols]: st.image(Image.open(img_file), caption=f"{img_file} πŸ–Ό", use_column_width=True) st.sidebar.subheader("CSV Gallery πŸ“Š") csv_files = get_gallery_files(["csv"]) if csv_files: for csv_file in csv_files[:5]: st.sidebar.markdown(get_download_link(csv_file, "text/csv", f"{csv_file} πŸ“Š"), unsafe_allow_html=True) st.sidebar.subheader("Model Management πŸ—‚οΈ") model_dirs = get_model_files() selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs) if selected_model != "None" and st.sidebar.button("Load Model πŸ“‚"): if 'builder' not in st.session_state: st.session_state['builder'] = ModelBuilder() config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general") st.session_state['builder'].load_model(selected_model, config) st.session_state['model_loaded'] = True st.rerun() # Main UI with Tabs tab1, tab2, tab3, tab4 = st.tabs(["Build Tiny Titan 🌱", "Fine-Tune Titan πŸ”§", "Test Titan πŸ§ͺ", "Agentic RAG Party 🌐"]) with tab1: st.header("Build Tiny Titan 🌱 (Assemble Your Mini-Mecha!)") base_model = st.selectbox( "Select Tiny Model", ["HuggingFaceTB/SmolLM-135M", "HuggingFaceTB/SmolLM-360M", "Qwen/Qwen1.5-0.5B-Chat"], help="Pick a pint-sized powerhouse (<1 GB)! SmolLM-135M (~270 MB), SmolLM-360M (~720 MB), Qwen1.5-0.5B (~1 GB)" ) model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") domain = st.text_input("Target Domain", "general") if st.button("Download Model ⬇️"): config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain) builder = ModelBuilder() builder.load_model(base_model, config) builder.save_model(config.model_path) st.session_state['builder'] = builder st.session_state['model_loaded'] = True st.success(f"Model downloaded and saved to {config.model_path}! πŸŽ‰ (Tiny but feisty!)") st.rerun() with tab2: st.header("Fine-Tune Titan πŸ”§ (Teach Your Titan Some Tricks!)") if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): st.warning("Please build or load a Titan first! ⚠️ (No Titan, no party!)") else: if st.button("Generate Sample CSV πŸ“"): sample_data = [ {"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."}, {"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."}, {"prompt": "What is a neural network?", "response": "A neural network is a brainy AI mimicking human noggins."}, ] csv_path = f"sft_data_{int(time.time())}.csv" with open(csv_path, "w", newline="") as f: writer = csv.DictWriter(f, fieldnames=["prompt", "response"]) writer.writeheader() writer.writerows(sample_data) st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True) st.success(f"Sample CSV generated as {csv_path}! βœ… (Fresh from the data oven!)") uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv") if uploaded_csv and st.button("Fine-Tune with Uploaded CSV πŸ”„"): csv_path = f"uploaded_sft_data_{int(time.time())}.csv" with open(csv_path, "wb") as f: f.write(uploaded_csv.read()) new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" new_config = ModelConfig( name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small", domain=st.session_state['builder'].config.domain ) st.session_state['builder'].config = new_config with st.status("Fine-tuning Titan... ⏳ (Whipping it into shape!)", expanded=True) as status: st.session_state['builder'].fine_tune_sft(csv_path) st.session_state['builder'].save_model(new_config.model_path) status.update(label="Fine-tuning completed! πŸŽ‰ (Titan’s ready to rumble!)", state="complete") zip_path = f"{new_config.model_path}.zip" zip_directory(new_config.model_path, zip_path) st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True) st.rerun() with tab3: st.header("Test Titan πŸ§ͺ (Put Your Titan to the Test!)") if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): st.warning("Please build or load a Titan first! ⚠️ (No Titan, no test drive!)") else: if st.session_state['builder'].sft_data: st.write("Testing with SFT Data:") with st.spinner("Running SFT data tests... ⏳ (Titan’s flexing its brain muscles!)"): for item in st.session_state['builder'].sft_data[:3]: prompt = item["prompt"] expected = item["response"] status_container = st.empty() generated = st.session_state['builder'].evaluate(prompt, status_container) st.write(f"**Prompt**: {prompt}") st.write(f"**Expected**: {expected}") st.write(f"**Generated**: {generated} (Titan says: '{random.choice(['Bleep bloop!', 'I am groot!', '42!'])}')") st.write("---") status_container.empty() # Clear status after each test test_prompt = st.text_area("Enter Test Prompt", "What is AI?") if st.button("Run Test ▢️"): with st.spinner("Testing your prompt... ⏳ (Titan’s pondering deeply!)"): status_container = st.empty() result = st.session_state['builder'].evaluate(test_prompt, status_container) st.write(f"**Generated Response**: {result} (Titan’s wisdom unleashed!)") status_container.empty() if st.button("Export Titan Files πŸ“¦"): config = st.session_state['builder'].config app_code = f""" import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("{config.model_path}") tokenizer = AutoTokenizer.from_pretrained("{config.model_path}") st.title("Tiny Titan Demo") input_text = st.text_area("Enter prompt") if st.button("Generate"): inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7) st.write(tokenizer.decode(outputs[0], skip_special_tokens=True)) """ with open("titan_app.py", "w") as f: f.write(app_code) reqs = "streamlit\ntorch\ntransformers\n" with open("titan_requirements.txt", "w") as f: f.write(reqs) readme = f""" # Tiny Titan Demo ## How to run 1. Install requirements: `pip install -r titan_requirements.txt` 2. Run the app: `streamlit run titan_app.py` 3. Input a prompt and click "Generate". Watch the magic unfold! πŸͺ„ """ with open("titan_README.md", "w") as f: f.write(readme) st.markdown(get_download_link("titan_app.py", "text/plain", "Download App"), unsafe_allow_html=True) st.markdown(get_download_link("titan_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True) st.markdown(get_download_link("titan_README.md", "text/markdown", "Download README"), unsafe_allow_html=True) st.success("Titan files exported! βœ… (Ready to conquer the galaxy!)") with tab4: st.header("Agentic RAG Party 🌐 (Party Like It’s 2099!)") st.write("This demo uses Tiny Titans with Agentic RAG to plan a superhero party, powered by DuckDuckGo retrieval!") if st.button("Run Agentic RAG Demo πŸŽ‰"): try: from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool from transformers import AutoModelForCausalLM # Load the model without separate tokenizer for agent with st.spinner("Loading SmolLM-135M... ⏳ (Titan’s suiting up!)"): model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-135M") st.write("Model loaded! πŸ¦Έβ€β™‚οΈ (Ready to party!)") # Initialize agent without tokenizer argument agent = CodeAgent( model=model, tools=[DuckDuckGoSearchTool(), VisitWebpageTool(), calculate_cargo_travel_time], additional_authorized_imports=["pandas"], planning_interval=5, verbosity_level=2, max_steps=15, ) task = """ Plan a luxury superhero-themed party at Wayne Manor (42.3601Β° N, 71.0589Β° W). Use DuckDuckGo to search for the latest superhero party trends, refine results for luxury elements (decorations, entertainment, catering), and calculate cargo travel times from key locations (New York: 40.7128Β° N, 74.0060Β° W; LA: 34.0522Β° N, 118.2437Β° W; London: 51.5074Β° N, 0.1278Β° W) to Wayne Manor. Synthesize a plan with at least 6 entries in a pandas dataframe, including locations, travel times, and luxury ideas. Add a random superhero catchphrase to each entry for fun! """ with st.spinner("Planning the ultimate superhero bash... ⏳ (Calling all caped crusaders!)"): result = agent.run(task) st.write("Agentic RAG Party Plan:") st.write(result) st.write("Party on, Wayne! πŸ¦Έβ€β™‚οΈπŸŽ‰") except ImportError: st.error("Please install required packages: `pip install smolagents pandas transformers`") except TypeError as e: st.error(f"Agent setup failed: {str(e)} (Looks like the Titans need a tune-up!)") except Exception as e: st.error(f"Error running demo: {str(e)} (Even Batman has off days!)")