Update app.py
Browse files
app.py
CHANGED
@@ -17,466 +17,479 @@ import math
|
|
17 |
from PIL import Image
|
18 |
import random
|
19 |
import logging
|
20 |
-
from datetime import datetime
|
21 |
-
import pytz
|
22 |
-
from diffusers import StableDiffusionPipeline
|
23 |
-
from urllib.parse import quote
|
24 |
-
import cv2
|
25 |
|
26 |
-
#
|
27 |
logging.basicConfig(level=logging.INFO)
|
28 |
logger = logging.getLogger(__name__)
|
29 |
|
30 |
-
# Page Configuration
|
31 |
-
st.set_page_config(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
# Model
|
34 |
@dataclass
|
35 |
class ModelConfig:
|
36 |
name: str
|
37 |
base_model: str
|
38 |
size: str
|
39 |
domain: Optional[str] = None
|
40 |
-
|
41 |
@property
|
42 |
def model_path(self):
|
43 |
return f"models/{self.name}"
|
44 |
|
45 |
-
|
46 |
-
class DiffusionConfig:
|
47 |
-
name: str
|
48 |
-
base_model: str
|
49 |
-
size: str
|
50 |
-
@property
|
51 |
-
def model_path(self):
|
52 |
-
return f"diffusion_models/{self.name}"
|
53 |
-
|
54 |
-
# Datasets
|
55 |
class SFTDataset(Dataset):
|
56 |
def __init__(self, data, tokenizer, max_length=128):
|
57 |
self.data = data
|
58 |
self.tokenizer = tokenizer
|
59 |
self.max_length = max_length
|
|
|
60 |
def __len__(self):
|
61 |
return len(self.data)
|
|
|
62 |
def __getitem__(self, idx):
|
63 |
prompt = self.data[idx]["prompt"]
|
64 |
response = self.data[idx]["response"]
|
|
|
65 |
full_text = f"{prompt} {response}"
|
66 |
-
full_encoding = self.tokenizer(
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
input_ids = full_encoding["input_ids"].squeeze()
|
69 |
attention_mask = full_encoding["attention_mask"].squeeze()
|
70 |
labels = input_ids.clone()
|
|
|
71 |
prompt_len = prompt_encoding["input_ids"].shape[1]
|
72 |
if prompt_len < self.max_length:
|
73 |
labels[:prompt_len] = -100
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
def __len__(self):
|
81 |
-
return len(self.images)
|
82 |
-
def __getitem__(self, idx):
|
83 |
-
return {"image": self.images[idx], "text": self.texts[idx]}
|
84 |
|
85 |
-
# Model
|
86 |
class ModelBuilder:
|
87 |
def __init__(self):
|
88 |
self.config = None
|
89 |
self.model = None
|
90 |
self.tokenizer = None
|
91 |
self.sft_data = None
|
|
|
|
|
92 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
self.tokenizer.pad_token
|
97 |
-
|
98 |
-
|
|
|
|
|
99 |
return self
|
|
|
100 |
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
101 |
self.sft_data = []
|
102 |
with open(csv_path, "r") as f:
|
103 |
reader = csv.DictReader(f)
|
104 |
for row in reader:
|
105 |
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
|
|
|
106 |
dataset = SFTDataset(self.sft_data, self.tokenizer)
|
107 |
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
108 |
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
|
|
|
109 |
self.model.train()
|
110 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
111 |
self.model.to(device)
|
112 |
for epoch in range(epochs):
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
125 |
return self
|
126 |
-
def save_model(self, path: str):
|
127 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
128 |
-
self.model.save_pretrained(path)
|
129 |
-
self.tokenizer.save_pretrained(path)
|
130 |
-
def evaluate(self, prompt: str):
|
131 |
-
self.model.eval()
|
132 |
-
with torch.no_grad():
|
133 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
134 |
-
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
135 |
-
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
136 |
|
137 |
-
class DiffusionBuilder:
|
138 |
-
def __init__(self):
|
139 |
-
self.config = None
|
140 |
-
self.pipeline = None
|
141 |
-
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
142 |
-
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
|
143 |
-
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
|
144 |
-
if config:
|
145 |
-
self.config = config
|
146 |
-
return self
|
147 |
-
def fine_tune_sft(self, images, texts, epochs=3):
|
148 |
-
dataset = DiffusionDataset(images, texts)
|
149 |
-
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
150 |
-
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
|
151 |
-
self.pipeline.unet.train()
|
152 |
-
for epoch in range(epochs):
|
153 |
-
total_loss = 0
|
154 |
-
for batch in dataloader:
|
155 |
-
optimizer.zero_grad()
|
156 |
-
image = batch["image"].to(self.pipeline.device)
|
157 |
-
text = batch["text"]
|
158 |
-
latents = self.pipeline.vae.encode(image).latent_dist.sample()
|
159 |
-
noise = torch.randn_like(latents)
|
160 |
-
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
|
161 |
-
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
|
162 |
-
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
|
163 |
-
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
|
164 |
-
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
165 |
-
loss.backward()
|
166 |
-
optimizer.step()
|
167 |
-
total_loss += loss.item()
|
168 |
-
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
169 |
-
return self
|
170 |
def save_model(self, path: str):
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
#
|
177 |
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
178 |
with open(file_path, 'rb') as f:
|
179 |
data = f.read()
|
180 |
b64 = base64.b64encode(data).decode()
|
181 |
-
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}
|
182 |
|
183 |
def zip_directory(directory_path, zip_path):
|
184 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
185 |
for root, _, files in os.walk(directory_path):
|
186 |
for file in files:
|
187 |
-
|
|
|
|
|
188 |
|
189 |
-
def get_model_files(
|
190 |
-
|
191 |
-
return [d for d in glob.glob(path) if os.path.isdir(d)]
|
192 |
|
193 |
def get_gallery_files(file_types):
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
def __init__(self, model, tokenizer):
|
223 |
self.model = model
|
224 |
self.tokenizer = tokenizer
|
225 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
226 |
self.model.to(self.device)
|
|
|
227 |
def generate(self, prompt: str) -> str:
|
228 |
self.model.eval()
|
229 |
with torch.no_grad():
|
230 |
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
|
231 |
-
outputs = self.model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
233 |
def plan_party(self, task: str) -> pd.DataFrame:
|
234 |
-
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
plan_text = self.generate(prompt)
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
243 |
]
|
244 |
-
|
245 |
-
|
246 |
-
class CVAgent:
|
247 |
-
def __init__(self, pipeline):
|
248 |
-
self.pipeline = pipeline
|
249 |
-
def generate(self, prompt: str) -> Image.Image:
|
250 |
-
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
251 |
-
def enhance_images(self, task: str) -> pd.DataFrame:
|
252 |
-
search_result = "Latest superhero art trends: Neon outlines, 3D holograms."
|
253 |
-
prompt = f"Given this context: '{search_result}'\n{task}"
|
254 |
-
st.markdown(f"Search Links: {display_search_links('superhero art trends')}", unsafe_allow_html=True)
|
255 |
data = [
|
256 |
-
{"
|
257 |
-
{"
|
|
|
|
|
|
|
|
|
258 |
]
|
|
|
259 |
return pd.DataFrame(data)
|
260 |
|
261 |
-
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
|
262 |
-
def to_radians(degrees: float) -> float:
|
263 |
-
return degrees * (math.pi / 180)
|
264 |
-
lat1, lon1 = map(to_radians, origin_coords)
|
265 |
-
lat2, lon2 = map(to_radians, destination_coords)
|
266 |
-
EARTH_RADIUS_KM = 6371.0
|
267 |
-
dlon = lon2 - lon1
|
268 |
-
dlat = lat2 - lat1
|
269 |
-
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
|
270 |
-
c = 2 * math.asin(math.sqrt(a))
|
271 |
-
distance = EARTH_RADIUS_KM * c
|
272 |
-
actual_distance = distance * 1.1
|
273 |
-
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
274 |
-
return round(flight_time, 2)
|
275 |
-
|
276 |
# Main App
|
277 |
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)")
|
278 |
|
279 |
-
# Sidebar Galleries
|
280 |
-
st.sidebar.header("
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
("
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
elif "Videos" in gallery_type:
|
296 |
-
st.video(file)
|
297 |
-
elif "Audio" in gallery_type:
|
298 |
-
st.audio(file)
|
299 |
|
300 |
st.sidebar.subheader("Model Management 🗂️")
|
301 |
-
|
302 |
-
model_dirs = get_model_files("causal_lm" if "NLP" in model_type else "diffusion")
|
303 |
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
|
304 |
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
305 |
-
builder
|
306 |
-
|
307 |
-
|
308 |
-
st.session_state['builder']
|
309 |
st.session_state['model_loaded'] = True
|
310 |
st.rerun()
|
311 |
|
312 |
-
# Tabs
|
313 |
-
tab1, tab2, tab3, tab4
|
314 |
-
"Build Titan 🌱",
|
315 |
-
"Fine-Tune NLP 🧠",
|
316 |
-
"Fine-Tune CV 🎨",
|
317 |
-
"Test Titans 🧪",
|
318 |
-
"Agentic RAG 🌀",
|
319 |
-
"Camera Inputs 📷"
|
320 |
-
])
|
321 |
|
322 |
with tab1:
|
323 |
-
st.header("Build
|
324 |
-
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type")
|
325 |
base_model = st.selectbox(
|
326 |
"Select Tiny Model",
|
327 |
-
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"]
|
|
|
328 |
)
|
329 |
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
|
|
|
|
330 |
if st.button("Download Model ⬇️"):
|
331 |
-
config =
|
332 |
-
builder = ModelBuilder()
|
333 |
builder.load_model(base_model, config)
|
334 |
builder.save_model(config.model_path)
|
335 |
st.session_state['builder'] = builder
|
336 |
st.session_state['model_loaded'] = True
|
|
|
337 |
st.rerun()
|
338 |
|
339 |
with tab2:
|
340 |
-
st.header("Fine-Tune
|
341 |
-
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False)
|
342 |
-
st.warning("
|
343 |
else:
|
344 |
-
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
with open(csv_path, "wb") as f:
|
348 |
f.write(uploaded_csv.read())
|
349 |
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
350 |
-
new_config = ModelConfig(
|
|
|
|
|
|
|
|
|
|
|
351 |
st.session_state['builder'].config = new_config
|
352 |
-
st.
|
353 |
-
|
|
|
|
|
|
|
354 |
zip_path = f"{new_config.model_path}.zip"
|
355 |
zip_directory(new_config.model_path, zip_path)
|
356 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download Tuned
|
|
|
357 |
|
358 |
with tab3:
|
359 |
-
st.header("
|
360 |
-
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False)
|
361 |
-
st.warning("
|
362 |
else:
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
st.
|
381 |
-
|
382 |
-
|
383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
with tab4:
|
386 |
-
st.header("
|
387 |
-
|
388 |
-
|
389 |
-
else:
|
390 |
-
if isinstance(st.session_state['builder'], ModelBuilder):
|
391 |
-
st.subheader("NLP Test 🧠")
|
392 |
-
test_prompt = st.text_area("Enter NLP Prompt", "Plan a superhero party!", key="nlp_test")
|
393 |
-
if st.button("Test NLP Titan ▶️"):
|
394 |
-
result = st.session_state['builder'].evaluate(test_prompt)
|
395 |
-
st.write(f"**Response**: {result}")
|
396 |
-
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
397 |
-
st.subheader("CV Test 🎨")
|
398 |
-
test_prompt = st.text_area("Enter CV Prompt", "Superhero in neon style", key="cv_test")
|
399 |
-
if st.button("Test CV Titan ▶️"):
|
400 |
-
image = st.session_state['builder'].generate(test_prompt)
|
401 |
-
st.image(image, caption="Generated Image")
|
402 |
-
|
403 |
-
cameras = detect_cameras()
|
404 |
-
if cameras:
|
405 |
-
st.subheader("Camera Snapshot Test 📷")
|
406 |
-
camera_idx = st.selectbox("Select Camera", cameras, key="camera_select")
|
407 |
-
snapshot_text = st.text_input("Snapshot Text", "Camera Snap", key="snap_text")
|
408 |
-
if st.button("Capture Snapshot 📸"):
|
409 |
-
cap = cv2.VideoCapture(camera_idx)
|
410 |
-
ret, frame = cap.read()
|
411 |
-
if ret:
|
412 |
-
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
413 |
-
img = Image.fromarray(rgb_frame)
|
414 |
-
filename = generate_filename(snapshot_text)
|
415 |
-
img.save(filename)
|
416 |
-
st.image(img, caption=filename)
|
417 |
-
cap.release()
|
418 |
-
|
419 |
-
with tab5:
|
420 |
-
st.header("Agentic RAG 🌀 (Smart Plans & Visions!)")
|
421 |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
422 |
-
st.warning("
|
423 |
else:
|
424 |
-
if
|
425 |
-
st.
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
st.
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
with
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
st.subheader(f"Camera {idx}")
|
448 |
-
cap = cv2.VideoCapture(idx)
|
449 |
-
if st.button(f"Capture from Camera {idx} 📸", key=f"cap_{idx}"):
|
450 |
-
ret, frame = cap.read()
|
451 |
-
if ret:
|
452 |
-
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
453 |
-
img = Image.fromarray(rgb_frame)
|
454 |
-
filename = generate_filename(f"Camera_{idx}_snap")
|
455 |
-
img.save(filename)
|
456 |
-
st.image(img, caption=filename)
|
457 |
-
cap.release()
|
458 |
-
|
459 |
-
# Preload demo files
|
460 |
-
demo_images = ["20250319_010000_AM_Batman.png", "20250319_010001_AM_IronMan.png", "20250319_010002_AM_Thor.png"]
|
461 |
-
demo_videos = ["20250319_010000_AM_Batman.mp4", "20250319_010001_AM_IronMan.mp4", "20250319_010002_AM_Thor.mp4"]
|
462 |
-
for img in demo_images:
|
463 |
-
if not os.path.exists(img):
|
464 |
-
Image.new("RGB", (100, 100)).save(img)
|
465 |
-
for vid in demo_videos:
|
466 |
-
if not os.path.exists(vid):
|
467 |
-
with open(vid, "wb") as f:
|
468 |
-
f.write(b"") # Dummy file
|
469 |
-
|
470 |
-
# Demo SFT Dataset
|
471 |
-
st.subheader("Diffusion SFT Demo Dataset 🎨")
|
472 |
-
demo_texts = ["Batman Neon", "Iron Man Hologram", "Thor Lightning"]
|
473 |
-
demo_code = "\n".join([f"{i+1}. {text} -> {demo_images[i]}" for i, text in enumerate(demo_texts)])
|
474 |
-
st.code(demo_code, language="text")
|
475 |
-
if st.button("Download Demo CSV 📝"):
|
476 |
-
csv_path = f"demo_diffusion_sft_{int(time.time())}.csv"
|
477 |
-
with open(csv_path, "w", newline="") as f:
|
478 |
-
writer = csv.writer(f)
|
479 |
-
writer.writerow(["image", "text"])
|
480 |
-
for img, text in zip(demo_images, demo_texts):
|
481 |
-
writer.writerow([img, text])
|
482 |
-
st.markdown(get_download_link(csv_path, "text/csv", "Download Demo CSV"), unsafe_allow_html=True)
|
|
|
17 |
from PIL import Image
|
18 |
import random
|
19 |
import logging
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Set up logging for feedback
|
22 |
logging.basicConfig(level=logging.INFO)
|
23 |
logger = logging.getLogger(__name__)
|
24 |
|
25 |
+
# Page Configuration with Humor
|
26 |
+
st.set_page_config(
|
27 |
+
page_title="SFT Tiny Titans 🚀",
|
28 |
+
page_icon="🤖",
|
29 |
+
layout="wide",
|
30 |
+
initial_sidebar_state="expanded",
|
31 |
+
menu_items={
|
32 |
+
'Get Help': 'https://huggingface.co/awacke1',
|
33 |
+
'Report a bug': 'https://huggingface.co/spaces/awacke1',
|
34 |
+
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! 🌌"
|
35 |
+
}
|
36 |
+
)
|
37 |
|
38 |
+
# Model Configuration Class
|
39 |
@dataclass
|
40 |
class ModelConfig:
|
41 |
name: str
|
42 |
base_model: str
|
43 |
size: str
|
44 |
domain: Optional[str] = None
|
45 |
+
|
46 |
@property
|
47 |
def model_path(self):
|
48 |
return f"models/{self.name}"
|
49 |
|
50 |
+
# Custom Dataset for SFT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
class SFTDataset(Dataset):
|
52 |
def __init__(self, data, tokenizer, max_length=128):
|
53 |
self.data = data
|
54 |
self.tokenizer = tokenizer
|
55 |
self.max_length = max_length
|
56 |
+
|
57 |
def __len__(self):
|
58 |
return len(self.data)
|
59 |
+
|
60 |
def __getitem__(self, idx):
|
61 |
prompt = self.data[idx]["prompt"]
|
62 |
response = self.data[idx]["response"]
|
63 |
+
|
64 |
full_text = f"{prompt} {response}"
|
65 |
+
full_encoding = self.tokenizer(
|
66 |
+
full_text,
|
67 |
+
max_length=self.max_length,
|
68 |
+
padding="max_length",
|
69 |
+
truncation=True,
|
70 |
+
return_tensors="pt"
|
71 |
+
)
|
72 |
+
|
73 |
+
prompt_encoding = self.tokenizer(
|
74 |
+
prompt,
|
75 |
+
max_length=self.max_length,
|
76 |
+
padding=False,
|
77 |
+
truncation=True,
|
78 |
+
return_tensors="pt"
|
79 |
+
)
|
80 |
+
|
81 |
input_ids = full_encoding["input_ids"].squeeze()
|
82 |
attention_mask = full_encoding["attention_mask"].squeeze()
|
83 |
labels = input_ids.clone()
|
84 |
+
|
85 |
prompt_len = prompt_encoding["input_ids"].shape[1]
|
86 |
if prompt_len < self.max_length:
|
87 |
labels[:prompt_len] = -100
|
88 |
+
|
89 |
+
return {
|
90 |
+
"input_ids": input_ids,
|
91 |
+
"attention_mask": attention_mask,
|
92 |
+
"labels": labels
|
93 |
+
}
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
# Model Builder Class with Easter Egg Jokes
|
96 |
class ModelBuilder:
|
97 |
def __init__(self):
|
98 |
self.config = None
|
99 |
self.model = None
|
100 |
self.tokenizer = None
|
101 |
self.sft_data = None
|
102 |
+
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
|
103 |
+
|
104 |
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
105 |
+
with st.spinner(f"Loading {model_path}... ⏳ (Patience, young padawan!)"):
|
106 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
107 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
108 |
+
if self.tokenizer.pad_token is None:
|
109 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
110 |
+
if config:
|
111 |
+
self.config = config
|
112 |
+
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
113 |
return self
|
114 |
+
|
115 |
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
116 |
self.sft_data = []
|
117 |
with open(csv_path, "r") as f:
|
118 |
reader = csv.DictReader(f)
|
119 |
for row in reader:
|
120 |
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
|
121 |
+
|
122 |
dataset = SFTDataset(self.sft_data, self.tokenizer)
|
123 |
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
124 |
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
|
125 |
+
|
126 |
self.model.train()
|
127 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
128 |
self.model.to(device)
|
129 |
for epoch in range(epochs):
|
130 |
+
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️ (The AI is lifting weights!)"):
|
131 |
+
total_loss = 0
|
132 |
+
for batch in dataloader:
|
133 |
+
optimizer.zero_grad()
|
134 |
+
input_ids = batch["input_ids"].to(device)
|
135 |
+
attention_mask = batch["attention_mask"].to(device)
|
136 |
+
labels = batch["labels"].to(device)
|
137 |
+
|
138 |
+
assert input_ids.shape[0] == labels.shape[0], f"Batch size mismatch: input_ids {input_ids.shape}, labels {labels.shape}"
|
139 |
+
|
140 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
141 |
+
loss = outputs.loss
|
142 |
+
loss.backward()
|
143 |
+
optimizer.step()
|
144 |
+
total_loss += loss.item()
|
145 |
+
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
146 |
+
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
|
147 |
return self
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
def save_model(self, path: str):
|
150 |
+
with st.spinner("Saving model... 💾 (Packing the AI’s suitcase!)"):
|
151 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
152 |
+
self.model.save_pretrained(path)
|
153 |
+
self.tokenizer.save_pretrained(path)
|
154 |
+
st.success(f"Model saved at {path}! ✅ May the force be with it.")
|
155 |
+
|
156 |
+
def evaluate(self, prompt: str, status_container=None):
|
157 |
+
"""Evaluate with feedback"""
|
158 |
+
self.model.eval()
|
159 |
+
if status_container:
|
160 |
+
status_container.write("Preparing to evaluate... 🧠 (Titan’s warming up its circuits!)")
|
161 |
+
logger.info(f"Evaluating prompt: {prompt}")
|
162 |
+
|
163 |
+
try:
|
164 |
+
with torch.no_grad():
|
165 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
166 |
+
if status_container:
|
167 |
+
status_container.write(f"Tokenized input shape: {inputs['input_ids'].shape} 📏")
|
168 |
+
|
169 |
+
outputs = self.model.generate(
|
170 |
+
**inputs,
|
171 |
+
max_new_tokens=50,
|
172 |
+
do_sample=True,
|
173 |
+
top_p=0.95,
|
174 |
+
temperature=0.7
|
175 |
+
)
|
176 |
+
if status_container:
|
177 |
+
status_container.write("Generation complete! Decoding response... 🗣")
|
178 |
+
|
179 |
+
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
180 |
+
logger.info(f"Generated response: {result}")
|
181 |
+
return result
|
182 |
+
except Exception as e:
|
183 |
+
logger.error(f"Evaluation error: {str(e)}")
|
184 |
+
if status_container:
|
185 |
+
status_container.error(f"Oops! Something broke: {str(e)} 💥 (Titan tripped over a wire!)")
|
186 |
+
return f"Error: {str(e)}"
|
187 |
|
188 |
+
# Utility Functions with Wit
|
189 |
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
190 |
with open(file_path, 'rb') as f:
|
191 |
data = f.read()
|
192 |
b64 = base64.b64encode(data).decode()
|
193 |
+
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥 (Grab it before it runs away!)</a>'
|
194 |
|
195 |
def zip_directory(directory_path, zip_path):
|
196 |
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
197 |
for root, _, files in os.walk(directory_path):
|
198 |
for file in files:
|
199 |
+
file_path = os.path.join(root, file)
|
200 |
+
arcname = os.path.relpath(file_path, os.path.dirname(directory_path))
|
201 |
+
zipf.write(file_path, arcname)
|
202 |
|
203 |
+
def get_model_files():
|
204 |
+
return [d for d in glob.glob("models/*") if os.path.isdir(d)]
|
|
|
205 |
|
206 |
def get_gallery_files(file_types):
|
207 |
+
files = []
|
208 |
+
for ext in file_types:
|
209 |
+
files.extend(glob.glob(f"*.{ext}"))
|
210 |
+
return sorted(files)
|
211 |
+
|
212 |
+
# Cargo Travel Time Tool
|
213 |
+
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
|
214 |
+
def to_radians(degrees: float) -> float:
|
215 |
+
return degrees * (math.pi / 180)
|
216 |
+
lat1, lon1 = map(to_radians, origin_coords)
|
217 |
+
lat2, lon2 = map(to_radians, destination_coords)
|
218 |
+
EARTH_RADIUS_KM = 6371.0
|
219 |
+
dlon = lon2 - lon1
|
220 |
+
dlat = lat2 - lat1
|
221 |
+
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
|
222 |
+
c = 2 * math.asin(math.sqrt(a))
|
223 |
+
distance = EARTH_RADIUS_KM * c
|
224 |
+
actual_distance = distance * 1.1
|
225 |
+
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
226 |
+
return round(flight_time, 2)
|
227 |
+
|
228 |
+
# Mock Search Tool for RAG
|
229 |
+
def mock_duckduckgo_search(query: str) -> str:
|
230 |
+
"""Simulate a search result for luxury superhero party trends"""
|
231 |
+
if "superhero party trends" in query.lower():
|
232 |
+
return """
|
233 |
+
Latest trends for 2025:
|
234 |
+
- Luxury decorations: Gold-plated Batman statues, holographic Avengers displays.
|
235 |
+
- Entertainment: Live stunt shows with Iron Man suits, VR superhero battles.
|
236 |
+
- Catering: Gourmet kryptonite-green cocktails, Thor’s hammer-shaped appetizers.
|
237 |
+
"""
|
238 |
+
return "No relevant results found."
|
239 |
+
|
240 |
+
# Simple Agent Class for Demo
|
241 |
+
class PartyPlannerAgent:
|
242 |
def __init__(self, model, tokenizer):
|
243 |
self.model = model
|
244 |
self.tokenizer = tokenizer
|
245 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
246 |
self.model.to(self.device)
|
247 |
+
|
248 |
def generate(self, prompt: str) -> str:
|
249 |
self.model.eval()
|
250 |
with torch.no_grad():
|
251 |
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
|
252 |
+
outputs = self.model.generate(
|
253 |
+
**inputs,
|
254 |
+
max_new_tokens=100,
|
255 |
+
do_sample=True,
|
256 |
+
top_p=0.95,
|
257 |
+
temperature=0.7
|
258 |
+
)
|
259 |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
260 |
+
|
261 |
def plan_party(self, task: str) -> pd.DataFrame:
|
262 |
+
# Mock search for context
|
263 |
+
search_result = mock_duckduckgo_search("latest superhero party trends")
|
264 |
+
|
265 |
+
# Locations and coordinates
|
266 |
+
locations = {
|
267 |
+
"Wayne Manor": (42.3601, -71.0589),
|
268 |
+
"New York": (40.7128, -74.0060),
|
269 |
+
"Los Angeles": (34.0522, -118.2437),
|
270 |
+
"London": (51.5074, -0.1278)
|
271 |
+
}
|
272 |
+
|
273 |
+
# Calculate travel times
|
274 |
+
wayne_coords = locations["Wayne Manor"]
|
275 |
+
travel_times = {
|
276 |
+
loc: calculate_cargo_travel_time(coords, wayne_coords)
|
277 |
+
for loc, coords in locations.items() if loc != "Wayne Manor"
|
278 |
+
}
|
279 |
+
|
280 |
+
# Generate luxury ideas with the SFT model
|
281 |
+
prompt = f"""
|
282 |
+
Given this context from a search: "{search_result}"
|
283 |
+
Plan a luxury superhero-themed party at Wayne Manor. Suggest luxury decorations, entertainment, and catering ideas.
|
284 |
+
"""
|
285 |
plan_text = self.generate(prompt)
|
286 |
+
|
287 |
+
# Parse plan into structured data (simplified)
|
288 |
+
catchphrases = [
|
289 |
+
"To the Batmobile!",
|
290 |
+
"Avengers, assemble!",
|
291 |
+
"I am Iron Man!",
|
292 |
+
"By the power of Grayskull!"
|
293 |
]
|
294 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
data = [
|
296 |
+
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues", "Catchphrase": random.choice(catchphrases)},
|
297 |
+
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Holographic Avengers displays", "Catchphrase": random.choice(catchphrases)},
|
298 |
+
{"Location": "London", "Travel Time (hrs)": travel_times["London"], "Luxury Idea": "Live stunt shows with Iron Man suits", "Catchphrase": random.choice(catchphrases)},
|
299 |
+
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles", "Catchphrase": random.choice(catchphrases)},
|
300 |
+
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gourmet kryptonite-green cocktails", "Catchphrase": random.choice(catchphrases)},
|
301 |
+
{"Location": "Los Angeles", "Travel Time (hrs)": travel_times["Los Angeles"], "Luxury Idea": "Thor’s hammer-shaped appetizers", "Catchphrase": random.choice(catchphrases)},
|
302 |
]
|
303 |
+
|
304 |
return pd.DataFrame(data)
|
305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
# Main App
|
307 |
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)")
|
308 |
|
309 |
+
# Sidebar with Galleries
|
310 |
+
st.sidebar.header("Galleries & Shenanigans 🎨")
|
311 |
+
st.sidebar.subheader("Image Gallery 📸")
|
312 |
+
img_files = get_gallery_files(["png", "jpg", "jpeg"])
|
313 |
+
if img_files:
|
314 |
+
img_cols = st.sidebar.slider("Image Columns 📸", 1, 5, 3)
|
315 |
+
cols = st.sidebar.columns(img_cols)
|
316 |
+
for idx, img_file in enumerate(img_files[:img_cols * 2]):
|
317 |
+
with cols[idx % img_cols]:
|
318 |
+
st.image(Image.open(img_file), caption=f"{img_file} 🖼", use_column_width=True)
|
319 |
+
|
320 |
+
st.sidebar.subheader("CSV Gallery 📊")
|
321 |
+
csv_files = get_gallery_files(["csv"])
|
322 |
+
if csv_files:
|
323 |
+
for csv_file in csv_files[:5]:
|
324 |
+
st.sidebar.markdown(get_download_link(csv_file, "text/csv", f"{csv_file} 📊"), unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
325 |
|
326 |
st.sidebar.subheader("Model Management 🗂️")
|
327 |
+
model_dirs = get_model_files()
|
|
|
328 |
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
|
329 |
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
330 |
+
if 'builder' not in st.session_state:
|
331 |
+
st.session_state['builder'] = ModelBuilder()
|
332 |
+
config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general")
|
333 |
+
st.session_state['builder'].load_model(selected_model, config)
|
334 |
st.session_state['model_loaded'] = True
|
335 |
st.rerun()
|
336 |
|
337 |
+
# Main UI with Tabs
|
338 |
+
tab1, tab2, tab3, tab4 = st.tabs(["Build Tiny Titan 🌱", "Fine-Tune Titan 🔧", "Test Titan 🧪", "Agentic RAG Party 🌐"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
with tab1:
|
341 |
+
st.header("Build Tiny Titan 🌱 (Assemble Your Mini-Mecha!)")
|
|
|
342 |
base_model = st.selectbox(
|
343 |
"Select Tiny Model",
|
344 |
+
["HuggingFaceTB/SmolLM-135M", "HuggingFaceTB/SmolLM-360M", "Qwen/Qwen1.5-0.5B-Chat"],
|
345 |
+
help="Pick a pint-sized powerhouse (<1 GB)! SmolLM-135M (~270 MB), SmolLM-360M (~720 MB), Qwen1.5-0.5B (~1 GB)"
|
346 |
)
|
347 |
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
348 |
+
domain = st.text_input("Target Domain", "general")
|
349 |
+
|
350 |
if st.button("Download Model ⬇️"):
|
351 |
+
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain)
|
352 |
+
builder = ModelBuilder()
|
353 |
builder.load_model(base_model, config)
|
354 |
builder.save_model(config.model_path)
|
355 |
st.session_state['builder'] = builder
|
356 |
st.session_state['model_loaded'] = True
|
357 |
+
st.success(f"Model downloaded and saved to {config.model_path}! 🎉 (Tiny but feisty!)")
|
358 |
st.rerun()
|
359 |
|
360 |
with tab2:
|
361 |
+
st.header("Fine-Tune Titan 🔧 (Teach Your Titan Some Tricks!)")
|
362 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
363 |
+
st.warning("Please build or load a Titan first! ⚠️ (No Titan, no party!)")
|
364 |
else:
|
365 |
+
if st.button("Generate Sample CSV 📝"):
|
366 |
+
sample_data = [
|
367 |
+
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human smarts in machines."},
|
368 |
+
{"prompt": "Explain machine learning", "response": "Machine learning is AI’s gym where models bulk up on data."},
|
369 |
+
{"prompt": "What is a neural network?", "response": "A neural network is a brainy AI mimicking human noggins."},
|
370 |
+
]
|
371 |
+
csv_path = f"sft_data_{int(time.time())}.csv"
|
372 |
+
with open(csv_path, "w", newline="") as f:
|
373 |
+
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
|
374 |
+
writer.writeheader()
|
375 |
+
writer.writerows(sample_data)
|
376 |
+
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
|
377 |
+
st.success(f"Sample CSV generated as {csv_path}! ✅ (Fresh from the data oven!)")
|
378 |
+
|
379 |
+
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
|
380 |
+
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"):
|
381 |
+
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
|
382 |
with open(csv_path, "wb") as f:
|
383 |
f.write(uploaded_csv.read())
|
384 |
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
385 |
+
new_config = ModelConfig(
|
386 |
+
name=new_model_name,
|
387 |
+
base_model=st.session_state['builder'].config.base_model,
|
388 |
+
size="small",
|
389 |
+
domain=st.session_state['builder'].config.domain
|
390 |
+
)
|
391 |
st.session_state['builder'].config = new_config
|
392 |
+
with st.status("Fine-tuning Titan... ⏳ (Whipping it into shape!)", expanded=True) as status:
|
393 |
+
st.session_state['builder'].fine_tune_sft(csv_path)
|
394 |
+
st.session_state['builder'].save_model(new_config.model_path)
|
395 |
+
status.update(label="Fine-tuning completed! 🎉 (Titan’s ready to rumble!)", state="complete")
|
396 |
+
|
397 |
zip_path = f"{new_config.model_path}.zip"
|
398 |
zip_directory(new_config.model_path, zip_path)
|
399 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
|
400 |
+
st.rerun()
|
401 |
|
402 |
with tab3:
|
403 |
+
st.header("Test Titan 🧪 (Put Your Titan to the Test!)")
|
404 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
405 |
+
st.warning("Please build or load a Titan first! ⚠️ (No Titan, no test drive!)")
|
406 |
else:
|
407 |
+
if st.session_state['builder'].sft_data:
|
408 |
+
st.write("Testing with SFT Data:")
|
409 |
+
with st.spinner("Running SFT data tests... ⏳ (Titan’s flexing its brain muscles!)"):
|
410 |
+
for item in st.session_state['builder'].sft_data[:3]:
|
411 |
+
prompt = item["prompt"]
|
412 |
+
expected = item["response"]
|
413 |
+
status_container = st.empty()
|
414 |
+
generated = st.session_state['builder'].evaluate(prompt, status_container)
|
415 |
+
st.write(f"**Prompt**: {prompt}")
|
416 |
+
st.write(f"**Expected**: {expected}")
|
417 |
+
st.write(f"**Generated**: {generated} (Titan says: '{random.choice(['Bleep bloop!', 'I am groot!', '42!'])}')")
|
418 |
+
st.write("---")
|
419 |
+
status_container.empty() # Clear status after each test
|
420 |
+
|
421 |
+
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
|
422 |
+
if st.button("Run Test ▶️"):
|
423 |
+
with st.spinner("Testing your prompt... ⏳ (Titan’s pondering deeply!)"):
|
424 |
+
status_container = st.empty()
|
425 |
+
result = st.session_state['builder'].evaluate(test_prompt, status_container)
|
426 |
+
st.write(f"**Generated Response**: {result} (Titan’s wisdom unleashed!)")
|
427 |
+
status_container.empty()
|
428 |
+
|
429 |
+
if st.button("Export Titan Files 📦"):
|
430 |
+
config = st.session_state['builder'].config
|
431 |
+
app_code = f"""
|
432 |
+
import streamlit as st
|
433 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
434 |
+
|
435 |
+
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
|
436 |
+
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
|
437 |
+
|
438 |
+
st.title("Tiny Titan Demo")
|
439 |
+
input_text = st.text_area("Enter prompt")
|
440 |
+
if st.button("Generate"):
|
441 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
442 |
+
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
443 |
+
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
444 |
+
"""
|
445 |
+
with open("titan_app.py", "w") as f:
|
446 |
+
f.write(app_code)
|
447 |
+
reqs = "streamlit\ntorch\ntransformers\n"
|
448 |
+
with open("titan_requirements.txt", "w") as f:
|
449 |
+
f.write(reqs)
|
450 |
+
readme = f"""
|
451 |
+
# Tiny Titan Demo
|
452 |
+
|
453 |
+
## How to run
|
454 |
+
1. Install requirements: `pip install -r titan_requirements.txt`
|
455 |
+
2. Run the app: `streamlit run titan_app.py`
|
456 |
+
3. Input a prompt and click "Generate". Watch the magic unfold! 🪄
|
457 |
+
"""
|
458 |
+
with open("titan_README.md", "w") as f:
|
459 |
+
f.write(readme)
|
460 |
+
|
461 |
+
st.markdown(get_download_link("titan_app.py", "text/plain", "Download App"), unsafe_allow_html=True)
|
462 |
+
st.markdown(get_download_link("titan_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True)
|
463 |
+
st.markdown(get_download_link("titan_README.md", "text/markdown", "Download README"), unsafe_allow_html=True)
|
464 |
+
st.success("Titan files exported! ✅ (Ready to conquer the galaxy!)")
|
465 |
|
466 |
with tab4:
|
467 |
+
st.header("Agentic RAG Party 🌐 (Party Like It’s 2099!)")
|
468 |
+
st.write("This demo uses your SFT-tuned Tiny Titan to plan a superhero party with mock retrieval!")
|
469 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
471 |
+
st.warning("Please build or load a Titan first! ⚠️ (No Titan, no party!)")
|
472 |
else:
|
473 |
+
if st.button("Run Agentic RAG Demo 🎉"):
|
474 |
+
with st.spinner("Loading your SFT-tuned Titan... ⏳ (Titan’s suiting up!)"):
|
475 |
+
agent = PartyPlannerAgent(
|
476 |
+
model=st.session_state['builder'].model,
|
477 |
+
tokenizer=st.session_state['builder'].tokenizer
|
478 |
+
)
|
479 |
+
st.write("Agent ready! 🦸♂️ (Time to plan an epic bash!)")
|
480 |
+
|
481 |
+
task = """
|
482 |
+
Plan a luxury superhero-themed party at Wayne Manor (42.3601° N, 71.0589° W).
|
483 |
+
Use mock search results for the latest superhero party trends, refine for luxury elements
|
484 |
+
(decorations, entertainment, catering), and calculate cargo travel times from key locations
|
485 |
+
(New York: 40.7128° N, 74.0060° W; LA: 34.0522° N, 118.2437° W; London: 51.5074° N, 0.1278° W)
|
486 |
+
to Wayne Manor. Create a plan with at least 6 entries in a pandas dataframe.
|
487 |
+
"""
|
488 |
+
with st.spinner("Planning the ultimate superhero bash... ⏳ (Calling all caped crusaders!)"):
|
489 |
+
try:
|
490 |
+
plan_df = agent.plan_party(task)
|
491 |
+
st.write("Agentic RAG Party Plan:")
|
492 |
+
st.dataframe(plan_df)
|
493 |
+
st.write("Party on, Wayne! 🦸♂️🎉")
|
494 |
+
except Exception as e:
|
495 |
+
st.error(f"Error planning party: {str(e)} (Even Superman has kryptonite days!)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|