|
|
|
import os |
|
import shutil |
|
import glob |
|
import base64 |
|
import streamlit as st |
|
import pandas as pd |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from torch.utils.data import Dataset, DataLoader |
|
import csv |
|
import time |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
import zipfile |
|
import math |
|
from PIL import Image |
|
import random |
|
import logging |
|
from datetime import datetime |
|
import pytz |
|
from diffusers import StableDiffusionPipeline |
|
from urllib.parse import quote |
|
import cv2 |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
st.set_page_config(page_title="SFT Tiny Titans π", page_icon="π€", layout="wide", initial_sidebar_state="expanded") |
|
|
|
|
|
@dataclass |
|
class ModelConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
domain: Optional[str] = None |
|
model_type: str = "causal_lm" |
|
@property |
|
def model_path(self): |
|
return f"models/{self.name}" |
|
|
|
@dataclass |
|
class DiffusionConfig: |
|
name: str |
|
base_model: str |
|
size: str |
|
@property |
|
def model_path(self): |
|
return f"diffusion_models/{self.name}" |
|
|
|
|
|
class SFTDataset(Dataset): |
|
def __init__(self, data, tokenizer, max_length=128): |
|
self.data = data |
|
self.tokenizer = tokenizer |
|
self.max_length = max_length |
|
def __len__(self): |
|
return len(self.data) |
|
def __getitem__(self, idx): |
|
prompt = self.data[idx]["prompt"] |
|
response = self.data[idx]["response"] |
|
full_text = f"{prompt} {response}" |
|
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt") |
|
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt") |
|
input_ids = full_encoding["input_ids"].squeeze() |
|
attention_mask = full_encoding["attention_mask"].squeeze() |
|
labels = input_ids.clone() |
|
prompt_len = prompt_encoding["input_ids"].shape[1] |
|
if prompt_len < self.max_length: |
|
labels[:prompt_len] = -100 |
|
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels} |
|
|
|
class DiffusionDataset(Dataset): |
|
def __init__(self, images, texts): |
|
self.images = images |
|
self.texts = texts |
|
def __len__(self): |
|
return len(self.images) |
|
def __getitem__(self, idx): |
|
return {"image": self.images[idx], "text": self.texts[idx]} |
|
|
|
|
|
class ModelBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.model = None |
|
self.tokenizer = None |
|
self.sft_data = None |
|
def load_model(self, model_path: str, config: Optional[ModelConfig] = None): |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if self.tokenizer.pad_token is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
if config: |
|
self.config = config |
|
return self |
|
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4): |
|
self.sft_data = [] |
|
with open(csv_path, "r") as f: |
|
reader = csv.DictReader(f) |
|
for row in reader: |
|
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]}) |
|
dataset = SFTDataset(self.sft_data, self.tokenizer) |
|
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) |
|
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) |
|
self.model.train() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(device) |
|
for epoch in range(epochs): |
|
total_loss = 0 |
|
for batch in dataloader: |
|
optimizer.zero_grad() |
|
input_ids = batch["input_ids"].to(device) |
|
attention_mask = batch["attention_mask"].to(device) |
|
labels = batch["labels"].to(device) |
|
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) |
|
loss = outputs.loss |
|
loss.backward() |
|
optimizer.step() |
|
total_loss += loss.item() |
|
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") |
|
return self |
|
def save_model(self, path: str): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.model.save_pretrained(path) |
|
self.tokenizer.save_pretrained(path) |
|
def evaluate(self, prompt: str): |
|
self.model.eval() |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) |
|
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7) |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
class DiffusionBuilder: |
|
def __init__(self): |
|
self.config = None |
|
self.pipeline = None |
|
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None): |
|
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path) |
|
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu") |
|
if config: |
|
self.config = config |
|
return self |
|
def fine_tune_sft(self, images, texts, epochs=3): |
|
dataset = DiffusionDataset(images, texts) |
|
dataloader = DataLoader(dataset, batch_size=1, shuffle=True) |
|
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5) |
|
self.pipeline.unet.train() |
|
for epoch in range(epochs): |
|
total_loss = 0 |
|
for batch in dataloader: |
|
optimizer.zero_grad() |
|
image = batch["image"].to(self.pipeline.device) |
|
text = batch["text"] |
|
latents = self.pipeline.vae.encode(image).latent_dist.sample() |
|
noise = torch.randn_like(latents) |
|
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device) |
|
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps) |
|
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0] |
|
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample |
|
loss = torch.nn.functional.mse_loss(pred_noise, noise) |
|
loss.backward() |
|
optimizer.step() |
|
total_loss += loss.item() |
|
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}") |
|
return self |
|
def save_model(self, path: str): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
self.pipeline.save_pretrained(path) |
|
def generate(self, prompt: str): |
|
return self.pipeline(prompt, num_inference_steps=50).images[0] |
|
|
|
|
|
def get_download_link(file_path, mime_type="text/plain", label="Download"): |
|
with open(file_path, 'rb') as f: |
|
data = f.read() |
|
b64 = base64.b64encode(data).decode() |
|
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} π₯</a>' |
|
|
|
def zip_directory(directory_path, zip_path): |
|
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: |
|
for root, _, files in os.walk(directory_path): |
|
for file in files: |
|
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path))) |
|
|
|
def get_model_files(model_type="causal_lm"): |
|
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*" |
|
return [d for d in glob.glob(path) if os.path.isdir(d)] |
|
|
|
def get_gallery_files(file_types): |
|
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")]) |
|
|
|
def generate_filename(text_line): |
|
central = pytz.timezone('US/Central') |
|
timestamp = datetime.now(central).strftime("%Y%m%d_%I%M%S_%p") |
|
safe_text = ''.join(c if c.isalnum() else '_' for c in text_line[:50]) |
|
return f"{timestamp}_{safe_text}.png" |
|
|
|
def display_search_links(query): |
|
search_urls = { |
|
"ArXiv": f"https://arxiv.org/search/?query={quote(query)}", |
|
"Wikipedia": f"https://en.wikipedia.org/wiki/{quote(query)}", |
|
"Google": f"https://www.google.com/search?q={quote(query)}", |
|
"YouTube": f"https://www.youtube.com/results?search_query={quote(query)}" |
|
} |
|
return ' '.join([f"[{name}]({url})" for name, url in search_urls.items()]) |
|
|
|
def detect_cameras(): |
|
cameras = [] |
|
for i in range(2): |
|
cap = cv2.VideoCapture(i) |
|
if cap.isOpened(): |
|
cameras.append(i) |
|
cap.release() |
|
return cameras |
|
|
|
|
|
class NLPAgent: |
|
def __init__(self, model, tokenizer): |
|
self.model = model |
|
self.tokenizer = tokenizer |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.model.to(self.device) |
|
def generate(self, prompt: str) -> str: |
|
self.model.eval() |
|
with torch.no_grad(): |
|
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device) |
|
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7) |
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
def plan_party(self, task: str) -> pd.DataFrame: |
|
search_result = "Latest trends for 2025: Gold-plated Batman statues, VR superhero battles." |
|
prompt = f"Given this context: '{search_result}'\n{task}" |
|
plan_text = self.generate(prompt) |
|
st.markdown(f"Search Links: {display_search_links('superhero party trends')}", unsafe_allow_html=True) |
|
locations = {"Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060)} |
|
travel_times = {loc: calculate_cargo_travel_time(coords, locations["Wayne Manor"]) for loc, coords in locations.items() if loc != "Wayne Manor"} |
|
data = [ |
|
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Idea": "Gold-plated Batman statues"}, |
|
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Idea": "VR superhero battles"} |
|
] |
|
return pd.DataFrame(data) |
|
|
|
class CVAgent: |
|
def __init__(self, pipeline): |
|
self.pipeline = pipeline |
|
def generate(self, prompt: str) -> Image.Image: |
|
return self.pipeline(prompt, num_inference_steps=50).images[0] |
|
def enhance_images(self, task: str) -> pd.DataFrame: |
|
search_result = "Latest superhero art trends: Neon outlines, 3D holograms." |
|
prompt = f"Given this context: '{search_result}'\n{task}" |
|
st.markdown(f"Search Links: {display_search_links('superhero art trends')}", unsafe_allow_html=True) |
|
data = [ |
|
{"Image Theme": "Batman", "Enhancement": "Neon outlines"}, |
|
{"Image Theme": "Iron Man", "Enhancement": "3D holograms"} |
|
] |
|
return pd.DataFrame(data) |
|
|
|
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float: |
|
def to_radians(degrees: float) -> float: |
|
return degrees * (math.pi / 180) |
|
lat1, lon1 = map(to_radians, origin_coords) |
|
lat2, lon2 = map(to_radians, destination_coords) |
|
EARTH_RADIUS_KM = 6371.0 |
|
dlon = lon2 - lon1 |
|
dlat = lat2 - lat1 |
|
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2) |
|
c = 2 * math.asin(math.sqrt(a)) |
|
distance = EARTH_RADIUS_KM * c |
|
actual_distance = distance * 1.1 |
|
flight_time = (actual_distance / cruising_speed_kmh) + 1.0 |
|
return round(flight_time, 2) |
|
|
|
|
|
st.title("SFT Tiny Titans π (Small but Mighty!)") |
|
|
|
|
|
st.sidebar.header("Shared Galleries π¨") |
|
for gallery_type, file_types, emoji in [ |
|
("Images πΈ", ["png", "jpg", "jpeg"], "πΌοΈ"), |
|
("Videos π₯", ["mp4"], "π¬"), |
|
("Audio πΆ", ["mp3"], "π΅") |
|
]: |
|
st.sidebar.subheader(f"{gallery_type} {emoji}") |
|
files = get_gallery_files(file_types) |
|
if files: |
|
cols_num = st.sidebar.slider(f"{gallery_type} Columns", 1, 5, 3, key=f"{gallery_type}_cols") |
|
cols = st.sidebar.columns(cols_num) |
|
for idx, file in enumerate(files[:cols_num * 2]): |
|
with cols[idx % cols_num]: |
|
if "Images" in gallery_type: |
|
st.image(Image.open(file), caption=file, use_column_width=True) |
|
elif "Videos" in gallery_type: |
|
st.video(file) |
|
elif "Audio" in gallery_type: |
|
st.audio(file) |
|
|
|
st.sidebar.subheader("Model Management ποΈ") |
|
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"]) |
|
model_dirs = get_model_files("causal_lm" if "NLP" in model_type else "diffusion") |
|
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs) |
|
if selected_model != "None" and st.sidebar.button("Load Model π"): |
|
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() |
|
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small") |
|
builder.load_model(selected_model, config) |
|
st.session_state['builder'] = builder |
|
st.session_state['model_loaded'] = True |
|
st.rerun() |
|
|
|
|
|
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([ |
|
"Build Titan π±", |
|
"Fine-Tune NLP π§ ", |
|
"Fine-Tune CV π¨", |
|
"Test Titans π§ͺ", |
|
"Agentic RAG π", |
|
"Camera Inputs π·" |
|
]) |
|
|
|
with tab1: |
|
st.header("Build Your Titan π±") |
|
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type") |
|
base_model = st.selectbox( |
|
"Select Tiny Model", |
|
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if "NLP" in model_type else ["stabilityai/stable-diffusion-2-1", "CompVis/stable-diffusion-v1-4"] |
|
) |
|
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}") |
|
if st.button("Download Model β¬οΈ"): |
|
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=model_name, base_model=base_model, size="small") |
|
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() |
|
builder.load_model(base_model, config) |
|
builder.save_model(config.model_path) |
|
st.session_state['builder'] = builder |
|
st.session_state['model_loaded'] = True |
|
st.rerun() |
|
|
|
with tab2: |
|
st.header("Fine-Tune NLP Titan π§ (Word Wizardry!)") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False) or not isinstance(st.session_state['builder'], ModelBuilder): |
|
st.warning("Load an NLP Titan first! β οΈ") |
|
else: |
|
uploaded_csv = st.file_uploader("Upload CSV for NLP SFT", type="csv", key="nlp_csv") |
|
if uploaded_csv and st.button("Tune the Wordsmith π§"): |
|
csv_path = f"nlp_sft_data_{int(time.time())}.csv" |
|
with open(csv_path, "wb") as f: |
|
f.write(uploaded_csv.read()) |
|
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" |
|
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small") |
|
st.session_state['builder'].config = new_config |
|
st.session_state['builder'].fine_tune_sft(csv_path) |
|
st.session_state['builder'].save_model(new_config.model_path) |
|
zip_path = f"{new_config.model_path}.zip" |
|
zip_directory(new_config.model_path, zip_path) |
|
st.markdown(get_download_link(zip_path, "application/zip", "Download Tuned NLP Titan"), unsafe_allow_html=True) |
|
|
|
with tab3: |
|
st.header("Fine-Tune CV Titan π¨ (Vision Vibes!)") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False) or not isinstance(st.session_state['builder'], DiffusionBuilder): |
|
st.warning("Load a CV Titan first! β οΈ") |
|
else: |
|
uploaded_files = st.file_uploader("Upload Images/Videos", type=["png", "jpg", "jpeg", "mp4", "mp3"], accept_multiple_files=True, key="cv_upload") |
|
text_input = st.text_area("Enter Text (one line per image)", "Batman Neon\nIron Man Hologram\nThor Lightning", key="cv_text") |
|
if uploaded_files and st.button("Tune the Visionary ποΈ"): |
|
images = [Image.open(f) for f in uploaded_files if f.type.startswith("image")] |
|
texts = text_input.splitlines() |
|
if len(images) > len(texts): |
|
texts.extend([""] * (len(images) - len(texts))) |
|
elif len(texts) > len(images): |
|
texts = texts[:len(images)] |
|
st.session_state['builder'].fine_tune_sft(images, texts) |
|
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}" |
|
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small") |
|
st.session_state['builder'].config = new_config |
|
st.session_state['builder'].save_model(new_config.model_path) |
|
for img, text in zip(images, texts): |
|
filename = generate_filename(text) |
|
img.save(filename) |
|
st.image(img, caption=filename) |
|
zip_path = f"{new_config.model_path}.zip" |
|
zip_directory(new_config.model_path, zip_path) |
|
st.markdown(get_download_link(zip_path, "application/zip", "Download Tuned CV Titan"), unsafe_allow_html=True) |
|
|
|
with tab4: |
|
st.header("Test Titans π§ͺ (Brains & Eyes!)") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Load a Titan first! β οΈ") |
|
else: |
|
if isinstance(st.session_state['builder'], ModelBuilder): |
|
st.subheader("NLP Test π§ ") |
|
test_prompt = st.text_area("Enter NLP Prompt", "Plan a superhero party!", key="nlp_test") |
|
if st.button("Test NLP Titan βΆοΈ"): |
|
result = st.session_state['builder'].evaluate(test_prompt) |
|
st.write(f"**Response**: {result}") |
|
elif isinstance(st.session_state['builder'], DiffusionBuilder): |
|
st.subheader("CV Test π¨") |
|
test_prompt = st.text_area("Enter CV Prompt", "Superhero in neon style", key="cv_test") |
|
if st.button("Test CV Titan βΆοΈ"): |
|
image = st.session_state['builder'].generate(test_prompt) |
|
st.image(image, caption="Generated Image") |
|
|
|
cameras = detect_cameras() |
|
if cameras: |
|
st.subheader("Camera Snapshot Test π·") |
|
camera_idx = st.selectbox("Select Camera", cameras, key="camera_select") |
|
snapshot_text = st.text_input("Snapshot Text", "Camera Snap", key="snap_text") |
|
if st.button("Capture Snapshot πΈ"): |
|
cap = cv2.VideoCapture(camera_idx) |
|
ret, frame = cap.read() |
|
if ret: |
|
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
img = Image.fromarray(rgb_frame) |
|
filename = generate_filename(snapshot_text) |
|
img.save(filename) |
|
st.image(img, caption=filename) |
|
cap.release() |
|
|
|
with tab5: |
|
st.header("Agentic RAG π (Smart Plans & Visions!)") |
|
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): |
|
st.warning("Load a Titan first! β οΈ") |
|
else: |
|
if isinstance(st.session_state['builder'], ModelBuilder): |
|
st.subheader("NLP RAG Party π§ ") |
|
if st.button("Run NLP RAG Demo π"): |
|
agent = NLPAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer) |
|
task = "Plan a luxury superhero-themed party at Wayne Manor." |
|
plan_df = agent.plan_party(task) |
|
st.dataframe(plan_df) |
|
elif isinstance(st.session_state['builder'], DiffusionBuilder): |
|
st.subheader("CV RAG Enhance π¨") |
|
if st.button("Run CV RAG Demo ποΈ"): |
|
agent = CVAgent(st.session_state['builder'].pipeline) |
|
task = "Enhance superhero images with 2025 trends." |
|
enhance_df = agent.enhance_images(task) |
|
st.dataframe(enhance_df) |
|
|
|
with tab6: |
|
st.header("Camera Inputs π· (Live Feed Fun!)") |
|
cameras = detect_cameras() |
|
if not cameras: |
|
st.warning("No cameras detected! β οΈ") |
|
else: |
|
st.write(f"Detected {len(cameras)} cameras!") |
|
for idx in cameras: |
|
st.subheader(f"Camera {idx}") |
|
cap = cv2.VideoCapture(idx) |
|
if st.button(f"Capture from Camera {idx} πΈ", key=f"cap_{idx}"): |
|
ret, frame = cap.read() |
|
if ret: |
|
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
img = Image.fromarray(rgb_frame) |
|
filename = generate_filename(f"Camera_{idx}_snap") |
|
img.save(filename) |
|
st.image(img, caption=filename) |
|
cap.release() |
|
|
|
|
|
demo_images = ["20250319_010000_AM_Batman.png", "20250319_010001_AM_IronMan.png", "20250319_010002_AM_Thor.png"] |
|
demo_videos = ["20250319_010000_AM_Batman.mp4", "20250319_010001_AM_IronMan.mp4", "20250319_010002_AM_Thor.mp4"] |
|
for img in demo_images: |
|
if not os.path.exists(img): |
|
Image.new("RGB", (100, 100)).save(img) |
|
for vid in demo_videos: |
|
if not os.path.exists(vid): |
|
with open(vid, "wb") as f: |
|
f.write(b"") |
|
|
|
|
|
st.subheader("Diffusion SFT Demo Dataset π¨") |
|
demo_texts = ["Batman Neon", "Iron Man Hologram", "Thor Lightning"] |
|
demo_code = "\n".join([f"{i+1}. {text} -> {demo_images[i]}" for i, text in enumerate(demo_texts)]) |
|
st.code(demo_code, language="text") |
|
if st.button("Download Demo CSV π"): |
|
csv_path = f"demo_diffusion_sft_{int(time.time())}.csv" |
|
with open(csv_path, "w", newline="") as f: |
|
writer = csv.writer(f) |
|
writer.writerow(["image", "text"]) |
|
for img, text in zip(demo_images, demo_texts): |
|
writer.writerow([img, text]) |
|
st.markdown(get_download_link(csv_path, "text/csv", "Download Demo CSV"), unsafe_allow_html=True) |