File size: 22,851 Bytes
d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 d0aa8c4 3820640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
#!/usr/bin/env python3
import os
import shutil
import glob
import base64
import streamlit as st
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset, DataLoader
import csv
import time
from dataclasses import dataclass
from typing import Optional, Tuple
import zipfile
import math
from PIL import Image
import random
import logging
from datetime import datetime
import pytz
from diffusers import StableDiffusionPipeline
from urllib.parse import quote
import cv2
# Logging setup
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Page Configuration
st.set_page_config(page_title="SFT Tiny Titans π", page_icon="π€", layout="wide", initial_sidebar_state="expanded")
# Model Configurations
@dataclass
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
size: str
@property
def model_path(self):
return f"diffusion_models/{self.name}"
# Datasets
class SFTDataset(Dataset):
def __init__(self, data, tokenizer, max_length=128):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
full_text = f"{prompt} {response}"
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
input_ids = full_encoding["input_ids"].squeeze()
attention_mask = full_encoding["attention_mask"].squeeze()
labels = input_ids.clone()
prompt_len = prompt_encoding["input_ids"].shape[1]
if prompt_len < self.max_length:
labels[:prompt_len] = -100
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
class DiffusionDataset(Dataset):
def __init__(self, images, texts):
self.images = images
self.texts = texts
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
return {"image": self.images[idx], "text": self.texts[idx]}
# Model Builders
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.sft_data = None
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
return self
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
self.sft_data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(self.sft_data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(device)
for epoch in range(epochs):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
return self
def save_model(self, path: str):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
def evaluate(self, prompt: str):
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
if config:
self.config = config
return self
def fine_tune_sft(self, images, texts, epochs=3):
dataset = DiffusionDataset(images, texts)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
self.pipeline.unet.train()
for epoch in range(epochs):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
image = batch["image"].to(self.pipeline.device)
text = batch["text"]
latents = self.pipeline.vae.encode(image).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
return self
def save_model(self, path: str):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=50).images[0]
# Utilities
def get_download_link(file_path, mime_type="text/plain", label="Download"):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} π₯</a>'
def zip_directory(directory_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(directory_path):
for file in files:
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
def get_model_files(model_type="causal_lm"):
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
return [d for d in glob.glob(path) if os.path.isdir(d)]
def get_gallery_files(file_types):
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
def generate_filename(text_line):
central = pytz.timezone('US/Central')
timestamp = datetime.now(central).strftime("%Y%m%d_%I%M%S_%p")
safe_text = ''.join(c if c.isalnum() else '_' for c in text_line[:50])
return f"{timestamp}_{safe_text}.png"
def display_search_links(query):
search_urls = {
"ArXiv": f"https://arxiv.org/search/?query={quote(query)}",
"Wikipedia": f"https://en.wikipedia.org/wiki/{quote(query)}",
"Google": f"https://www.google.com/search?q={quote(query)}",
"YouTube": f"https://www.youtube.com/results?search_query={quote(query)}"
}
return ' '.join([f"[{name}]({url})" for name, url in search_urls.items()])
def detect_cameras():
cameras = []
for i in range(2): # Check first two indices
cap = cv2.VideoCapture(i)
if cap.isOpened():
cameras.append(i)
cap.release()
return cameras
# Agent Classes
class NLPAgent:
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device)
def generate(self, prompt: str) -> str:
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
def plan_party(self, task: str) -> pd.DataFrame:
search_result = "Latest trends for 2025: Gold-plated Batman statues, VR superhero battles."
prompt = f"Given this context: '{search_result}'\n{task}"
plan_text = self.generate(prompt)
st.markdown(f"Search Links: {display_search_links('superhero party trends')}", unsafe_allow_html=True)
locations = {"Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060)}
travel_times = {loc: calculate_cargo_travel_time(coords, locations["Wayne Manor"]) for loc, coords in locations.items() if loc != "Wayne Manor"}
data = [
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Idea": "Gold-plated Batman statues"},
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Idea": "VR superhero battles"}
]
return pd.DataFrame(data)
class CVAgent:
def __init__(self, pipeline):
self.pipeline = pipeline
def generate(self, prompt: str) -> Image.Image:
return self.pipeline(prompt, num_inference_steps=50).images[0]
def enhance_images(self, task: str) -> pd.DataFrame:
search_result = "Latest superhero art trends: Neon outlines, 3D holograms."
prompt = f"Given this context: '{search_result}'\n{task}"
st.markdown(f"Search Links: {display_search_links('superhero art trends')}", unsafe_allow_html=True)
data = [
{"Image Theme": "Batman", "Enhancement": "Neon outlines"},
{"Image Theme": "Iron Man", "Enhancement": "3D holograms"}
]
return pd.DataFrame(data)
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
def to_radians(degrees: float) -> float:
return degrees * (math.pi / 180)
lat1, lon1 = map(to_radians, origin_coords)
lat2, lon2 = map(to_radians, destination_coords)
EARTH_RADIUS_KM = 6371.0
dlon = lon2 - lon1
dlat = lat2 - lat1
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
c = 2 * math.asin(math.sqrt(a))
distance = EARTH_RADIUS_KM * c
actual_distance = distance * 1.1
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
return round(flight_time, 2)
# Main App
st.title("SFT Tiny Titans π (Small but Mighty!)")
# Sidebar Galleries
st.sidebar.header("Shared Galleries π¨")
for gallery_type, file_types, emoji in [
("Images πΈ", ["png", "jpg", "jpeg"], "πΌοΈ"),
("Videos π₯", ["mp4"], "π¬"),
("Audio πΆ", ["mp3"], "π΅")
]:
st.sidebar.subheader(f"{gallery_type} {emoji}")
files = get_gallery_files(file_types)
if files:
cols_num = st.sidebar.slider(f"{gallery_type} Columns", 1, 5, 3, key=f"{gallery_type}_cols")
cols = st.sidebar.columns(cols_num)
for idx, file in enumerate(files[:cols_num * 2]):
with cols[idx % cols_num]:
if "Images" in gallery_type:
st.image(Image.open(file), caption=file, use_column_width=True)
elif "Videos" in gallery_type:
st.video(file)
elif "Audio" in gallery_type:
st.audio(file)
st.sidebar.subheader("Model Management ποΈ")
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"])
model_dirs = get_model_files("causal_lm" if "NLP" in model_type else "diffusion")
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
if selected_model != "None" and st.sidebar.button("Load Model π"):
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
builder.load_model(selected_model, config)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.rerun()
# Tabs
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([
"Build Titan π±",
"Fine-Tune NLP π§ ",
"Fine-Tune CV π¨",
"Test Titans π§ͺ",
"Agentic RAG π",
"Camera Inputs π·"
])
with tab1:
st.header("Build Your Titan π±")
model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type")
base_model = st.selectbox(
"Select Tiny Model",
["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if "NLP" in model_type else ["stabilityai/stable-diffusion-2-1", "CompVis/stable-diffusion-v1-4"]
)
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
if st.button("Download Model β¬οΈ"):
config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=model_name, base_model=base_model, size="small")
builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
builder.load_model(base_model, config)
builder.save_model(config.model_path)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.rerun()
with tab2:
st.header("Fine-Tune NLP Titan π§ (Word Wizardry!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False) or not isinstance(st.session_state['builder'], ModelBuilder):
st.warning("Load an NLP Titan first! β οΈ")
else:
uploaded_csv = st.file_uploader("Upload CSV for NLP SFT", type="csv", key="nlp_csv")
if uploaded_csv and st.button("Tune the Wordsmith π§"):
csv_path = f"nlp_sft_data_{int(time.time())}.csv"
with open(csv_path, "wb") as f:
f.write(uploaded_csv.read())
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
st.session_state['builder'].config = new_config
st.session_state['builder'].fine_tune_sft(csv_path)
st.session_state['builder'].save_model(new_config.model_path)
zip_path = f"{new_config.model_path}.zip"
zip_directory(new_config.model_path, zip_path)
st.markdown(get_download_link(zip_path, "application/zip", "Download Tuned NLP Titan"), unsafe_allow_html=True)
with tab3:
st.header("Fine-Tune CV Titan π¨ (Vision Vibes!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False) or not isinstance(st.session_state['builder'], DiffusionBuilder):
st.warning("Load a CV Titan first! β οΈ")
else:
uploaded_files = st.file_uploader("Upload Images/Videos", type=["png", "jpg", "jpeg", "mp4", "mp3"], accept_multiple_files=True, key="cv_upload")
text_input = st.text_area("Enter Text (one line per image)", "Batman Neon\nIron Man Hologram\nThor Lightning", key="cv_text")
if uploaded_files and st.button("Tune the Visionary ποΈ"):
images = [Image.open(f) for f in uploaded_files if f.type.startswith("image")]
texts = text_input.splitlines()
if len(images) > len(texts):
texts.extend([""] * (len(images) - len(texts)))
elif len(texts) > len(images):
texts = texts[:len(images)]
st.session_state['builder'].fine_tune_sft(images, texts)
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
st.session_state['builder'].config = new_config
st.session_state['builder'].save_model(new_config.model_path)
for img, text in zip(images, texts):
filename = generate_filename(text)
img.save(filename)
st.image(img, caption=filename)
zip_path = f"{new_config.model_path}.zip"
zip_directory(new_config.model_path, zip_path)
st.markdown(get_download_link(zip_path, "application/zip", "Download Tuned CV Titan"), unsafe_allow_html=True)
with tab4:
st.header("Test Titans π§ͺ (Brains & Eyes!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! β οΈ")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP Test π§ ")
test_prompt = st.text_area("Enter NLP Prompt", "Plan a superhero party!", key="nlp_test")
if st.button("Test NLP Titan βΆοΈ"):
result = st.session_state['builder'].evaluate(test_prompt)
st.write(f"**Response**: {result}")
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV Test π¨")
test_prompt = st.text_area("Enter CV Prompt", "Superhero in neon style", key="cv_test")
if st.button("Test CV Titan βΆοΈ"):
image = st.session_state['builder'].generate(test_prompt)
st.image(image, caption="Generated Image")
cameras = detect_cameras()
if cameras:
st.subheader("Camera Snapshot Test π·")
camera_idx = st.selectbox("Select Camera", cameras, key="camera_select")
snapshot_text = st.text_input("Snapshot Text", "Camera Snap", key="snap_text")
if st.button("Capture Snapshot πΈ"):
cap = cv2.VideoCapture(camera_idx)
ret, frame = cap.read()
if ret:
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = Image.fromarray(rgb_frame)
filename = generate_filename(snapshot_text)
img.save(filename)
st.image(img, caption=filename)
cap.release()
with tab5:
st.header("Agentic RAG π (Smart Plans & Visions!)")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Load a Titan first! β οΈ")
else:
if isinstance(st.session_state['builder'], ModelBuilder):
st.subheader("NLP RAG Party π§ ")
if st.button("Run NLP RAG Demo π"):
agent = NLPAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer)
task = "Plan a luxury superhero-themed party at Wayne Manor."
plan_df = agent.plan_party(task)
st.dataframe(plan_df)
elif isinstance(st.session_state['builder'], DiffusionBuilder):
st.subheader("CV RAG Enhance π¨")
if st.button("Run CV RAG Demo ποΈ"):
agent = CVAgent(st.session_state['builder'].pipeline)
task = "Enhance superhero images with 2025 trends."
enhance_df = agent.enhance_images(task)
st.dataframe(enhance_df)
with tab6:
st.header("Camera Inputs π· (Live Feed Fun!)")
cameras = detect_cameras()
if not cameras:
st.warning("No cameras detected! β οΈ")
else:
st.write(f"Detected {len(cameras)} cameras!")
for idx in cameras:
st.subheader(f"Camera {idx}")
cap = cv2.VideoCapture(idx)
if st.button(f"Capture from Camera {idx} πΈ", key=f"cap_{idx}"):
ret, frame = cap.read()
if ret:
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = Image.fromarray(rgb_frame)
filename = generate_filename(f"Camera_{idx}_snap")
img.save(filename)
st.image(img, caption=filename)
cap.release()
# Preload demo files
demo_images = ["20250319_010000_AM_Batman.png", "20250319_010001_AM_IronMan.png", "20250319_010002_AM_Thor.png"]
demo_videos = ["20250319_010000_AM_Batman.mp4", "20250319_010001_AM_IronMan.mp4", "20250319_010002_AM_Thor.mp4"]
for img in demo_images:
if not os.path.exists(img):
Image.new("RGB", (100, 100)).save(img)
for vid in demo_videos:
if not os.path.exists(vid):
with open(vid, "wb") as f:
f.write(b"") # Dummy file
# Demo SFT Dataset
st.subheader("Diffusion SFT Demo Dataset π¨")
demo_texts = ["Batman Neon", "Iron Man Hologram", "Thor Lightning"]
demo_code = "\n".join([f"{i+1}. {text} -> {demo_images[i]}" for i, text in enumerate(demo_texts)])
st.code(demo_code, language="text")
if st.button("Download Demo CSV π"):
csv_path = f"demo_diffusion_sft_{int(time.time())}.csv"
with open(csv_path, "w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["image", "text"])
for img, text in zip(demo_images, demo_texts):
writer.writerow([img, text])
st.markdown(get_download_link(csv_path, "text/csv", "Download Demo CSV"), unsafe_allow_html=True) |