File size: 15,412 Bytes
017755d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
#!/usr/bin/env python3
import os
import shutil
import glob
import base64
import streamlit as st
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset, DataLoader
import csv
import time
from dataclasses import dataclass
from typing import Optional, Tuple
import zipfile
import math
# Page Configuration
st.set_page_config(
page_title="SFT Model Builder π",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded",
)
# Model Configuration Class
@dataclass
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
@property
def model_path(self):
return f"models/{self.name}"
# Custom Dataset for SFT
class SFTDataset(Dataset):
def __init__(self, data, tokenizer, max_length=128):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
prompt = self.data[idx]["prompt"]
response = self.data[idx]["response"]
prompt_encoding = self.tokenizer(
prompt,
max_length=self.max_length // 2,
padding="max_length",
truncation=True,
return_tensors="pt"
)
full_text = f"{prompt} {response}"
full_encoding = self.tokenizer(
full_text,
max_length=self.max_length,
padding="max_length",
truncation=True,
return_tensors="pt"
)
input_ids = prompt_encoding["input_ids"].squeeze()
attention_mask = prompt_encoding["attention_mask"].squeeze()
labels = full_encoding["input_ids"].squeeze()
prompt_len = prompt_encoding["input_ids"].ne(self.tokenizer.pad_token_id).sum().item()
labels[:prompt_len] = -100 # Mask prompt in loss
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
# Model Builder Class
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.sft_data = None
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
with st.spinner("Loading model... β³"):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
st.success("Model loaded! β
")
return self
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
self.sft_data = []
with open(csv_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
dataset = SFTDataset(self.sft_data, self.tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
self.model.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(device)
for epoch in range(epochs):
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βοΈ"):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
labels = batch["labels"].to(device)
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
st.success("SFT Fine-tuning completed! π")
return self
def save_model(self, path: str):
with st.spinner("Saving model... πΎ"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success(f"Model saved at {path}! β
")
def evaluate(self, prompt: str):
self.model.eval()
with torch.no_grad():
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
outputs = self.model.generate(
**inputs,
max_new_tokens=50,
do_sample=True,
top_p=0.95,
temperature=0.7
)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Utility Functions
def get_download_link(file_path, mime_type="text/plain", label="Download"):
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} π₯</a>'
def zip_directory(directory_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(directory_path):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, os.path.dirname(directory_path))
zipf.write(file_path, arcname)
def get_model_files():
return [d for d in glob.glob("models/*") if os.path.isdir(d)]
# Cargo Travel Time Tool
def calculate_cargo_travel_time(
origin_coords: Tuple[float, float],
destination_coords: Tuple[float, float],
cruising_speed_kmh: float = 750.0
) -> float:
def to_radians(degrees: float) -> float:
return degrees * (math.pi / 180)
lat1, lon1 = map(to_radians, origin_coords)
lat2, lon2 = map(to_radians, destination_coords)
EARTH_RADIUS_KM = 6371.0
dlon = lon2 - lon1
dlat = lat2 - lat1
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
c = 2 * math.asin(math.sqrt(a))
distance = EARTH_RADIUS_KM * c
actual_distance = distance * 1.1
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
return round(flight_time, 2)
# Main App
st.title("SFT Model Builder π€π")
# Sidebar for Model Management
st.sidebar.header("Model Management ποΈ")
model_dirs = get_model_files()
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
if selected_model != "None" and st.sidebar.button("Load Model π"):
if 'builder' not in st.session_state:
st.session_state['builder'] = ModelBuilder()
config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general")
st.session_state['builder'].load_model(selected_model, config)
st.session_state['model_loaded'] = True
st.rerun()
# Main UI with Tabs
tab1, tab2, tab3, tab4 = st.tabs(["Build New Model π±", "Fine-Tune Model π§", "Test Model π§ͺ", "Agentic RAG Demo π"])
with tab1:
st.header("Build New Model π±")
base_model = st.selectbox(
"Select Base Model",
[
"HuggingFaceTB/SmolLM-135M", # ~270 MB
"HuggingFaceTB/SmolLM-360M", # ~720 MB
"Qwen/Qwen1.5-0.5B-Chat", # ~1 GB
"TinyLlama/TinyLlama-1.1B-Chat-v1.0" # ~2 GB, slightly over but included
],
help="Choose a tiny, open-source model (<1 GB except TinyLlama)"
)
model_name = st.text_input("Model Name", f"new-model-{int(time.time())}")
domain = st.text_input("Target Domain", "general")
if st.button("Download Model β¬οΈ"):
config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain)
builder = ModelBuilder()
builder.load_model(base_model, config)
builder.save_model(config.model_path)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
st.success(f"Model downloaded and saved to {config.model_path}! π")
st.rerun()
with tab2:
st.header("Fine-Tune Model π§")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please download or load a model first! β οΈ")
else:
if st.button("Generate Sample CSV π"):
sample_data = [
{"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human intelligence in machines."},
{"prompt": "Explain machine learning", "response": "Machine learning is a subset of AI where models learn from data."},
{"prompt": "What is a neural network?", "response": "A neural network is a model inspired by the human brain."},
]
csv_path = f"sft_data_{int(time.time())}.csv"
with open(csv_path, "w", newline="") as f:
writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
writer.writeheader()
writer.writerows(sample_data)
st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
st.success(f"Sample CSV generated as {csv_path}! β
")
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV π"):
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
with open(csv_path, "wb") as f:
f.write(uploaded_csv.read())
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
new_config = ModelConfig(
name=new_model_name,
base_model=st.session_state['builder'].config.base_model,
size="small",
domain=st.session_state['builder'].config.domain
)
st.session_state['builder'].config = new_config
with st.status("Fine-tuning model... β³", expanded=True) as status:
st.session_state['builder'].fine_tune_sft(csv_path)
st.session_state['builder'].save_model(new_config.model_path)
status.update(label="Fine-tuning completed! π", state="complete")
zip_path = f"{new_config.model_path}.zip"
zip_directory(new_config.model_path, zip_path)
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Model"), unsafe_allow_html=True)
st.rerun()
with tab3:
st.header("Test Model π§ͺ")
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
st.warning("Please download or load a model first! β οΈ")
else:
if st.session_state['builder'].sft_data:
st.write("Testing with SFT Data:")
for item in st.session_state['builder'].sft_data[:3]:
prompt = item["prompt"]
expected = item["response"]
generated = st.session_state['builder'].evaluate(prompt)
st.write(f"**Prompt**: {prompt}")
st.write(f"**Expected**: {expected}")
st.write(f"**Generated**: {generated}")
st.write("---")
test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
if st.button("Run Test βΆοΈ"):
result = st.session_state['builder'].evaluate(test_prompt)
st.write(f"**Generated Response**: {result}")
if st.button("Export Model Files π¦"):
config = st.session_state['builder'].config
app_code = f"""
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")
st.title("SFT Model Demo")
input_text = st.text_area("Enter prompt")
if st.button("Generate"):
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
"""
with open("sft_app.py", "w") as f:
f.write(app_code)
reqs = "streamlit\ntorch\ntransformers\n"
with open("sft_requirements.txt", "w") as f:
f.write(reqs)
readme = f"""
# SFT Model Demo
## How to run
1. Install requirements: `pip install -r sft_requirements.txt`
2. Run the app: `streamlit run sft_app.py`
3. Input a prompt and click "Generate".
"""
with open("sft_README.md", "w") as f:
f.write(readme)
st.markdown(get_download_link("sft_app.py", "text/plain", "Download App"), unsafe_allow_html=True)
st.markdown(get_download_link("sft_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True)
st.markdown(get_download_link("sft_README.md", "text/markdown", "Download README"), unsafe_allow_html=True)
st.success("Model files exported! β
")
with tab4:
st.header("Agentic RAG Demo π")
st.write("This demo uses tiny models with Agentic RAG to plan a luxury superhero-themed party, enhancing retrieval with DuckDuckGo.")
if st.button("Run Agentic RAG Demo π"):
try:
from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool
# Load selected tiny model
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-135M")
model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-135M")
# Define Agentic RAG agent
agent = CodeAgent(
model=model,
tokenizer=tokenizer,
tools=[DuckDuckGoSearchTool(), VisitWebpageTool(), calculate_cargo_travel_time],
additional_authorized_imports=["pandas"],
planning_interval=5,
verbosity_level=2,
max_steps=15,
)
task = """
Plan a luxury superhero-themed party at Wayne Manor (42.3601Β° N, 71.0589Β° W). Search for the latest superhero party trends using DuckDuckGo,
refine results to include luxury elements (decorations, entertainment, catering), and calculate cargo travel times from key locations
(e.g., New York, LA, London) to Wayne Manor. Synthesize a complete plan and return it as a pandas dataframe with at least 6 entries
including locations, travel times, and luxury party ideas.
"""
with st.spinner("Running Agentic RAG system... β³"):
result = agent.run(task)
st.write("Agentic RAG Result:")
st.write(result)
except ImportError:
st.error("Please install required packages: `pip install smolagents pandas`")
except Exception as e:
st.error(f"Error running demo: {str(e)}")
|