File size: 15,412 Bytes
017755d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#!/usr/bin/env python3
import os
import shutil
import glob
import base64
import streamlit as st
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import Dataset, DataLoader
import csv
import time
from dataclasses import dataclass
from typing import Optional, Tuple
import zipfile
import math

# Page Configuration
st.set_page_config(
    page_title="SFT Model Builder πŸš€",
    page_icon="πŸ€–",
    layout="wide",
    initial_sidebar_state="expanded",
)

# Model Configuration Class
@dataclass
class ModelConfig:
    name: str
    base_model: str
    size: str
    domain: Optional[str] = None
    
    @property
    def model_path(self):
        return f"models/{self.name}"

# Custom Dataset for SFT
class SFTDataset(Dataset):
    def __init__(self, data, tokenizer, max_length=128):
        self.data = data
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        prompt = self.data[idx]["prompt"]
        response = self.data[idx]["response"]
        
        prompt_encoding = self.tokenizer(
            prompt,
            max_length=self.max_length // 2,
            padding="max_length",
            truncation=True,
            return_tensors="pt"
        )
        
        full_text = f"{prompt} {response}"
        full_encoding = self.tokenizer(
            full_text,
            max_length=self.max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt"
        )
        
        input_ids = prompt_encoding["input_ids"].squeeze()
        attention_mask = prompt_encoding["attention_mask"].squeeze()
        labels = full_encoding["input_ids"].squeeze()
        
        prompt_len = prompt_encoding["input_ids"].ne(self.tokenizer.pad_token_id).sum().item()
        labels[:prompt_len] = -100  # Mask prompt in loss
        
        return {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "labels": labels
        }

# Model Builder Class
class ModelBuilder:
    def __init__(self):
        self.config = None
        self.model = None
        self.tokenizer = None
        self.sft_data = None

    def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
        with st.spinner("Loading model... ⏳"):
            self.model = AutoModelForCausalLM.from_pretrained(model_path)
            self.tokenizer = AutoTokenizer.from_pretrained(model_path)
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
            if config:
                self.config = config
        st.success("Model loaded! βœ…")
        return self

    def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
        self.sft_data = []
        with open(csv_path, "r") as f:
            reader = csv.DictReader(f)
            for row in reader:
                self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})

        dataset = SFTDataset(self.sft_data, self.tokenizer)
        dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
        optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)

        self.model.train()
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model.to(device)
        for epoch in range(epochs):
            with st.spinner(f"Training epoch {epoch + 1}/{epochs}... βš™οΈ"):
                total_loss = 0
                for batch in dataloader:
                    optimizer.zero_grad()
                    input_ids = batch["input_ids"].to(device)
                    attention_mask = batch["attention_mask"].to(device)
                    labels = batch["labels"].to(device)
                    outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
                    loss = outputs.loss
                    loss.backward()
                    optimizer.step()
                    total_loss += loss.item()
                st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
        st.success("SFT Fine-tuning completed! πŸŽ‰")
        return self

    def save_model(self, path: str):
        with st.spinner("Saving model... πŸ’Ύ"):
            os.makedirs(os.path.dirname(path), exist_ok=True)
            self.model.save_pretrained(path)
            self.tokenizer.save_pretrained(path)
        st.success(f"Model saved at {path}! βœ…")

    def evaluate(self, prompt: str):
        self.model.eval()
        with torch.no_grad():
            inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=50,
                do_sample=True,
                top_p=0.95,
                temperature=0.7
            )
            return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

# Utility Functions
def get_download_link(file_path, mime_type="text/plain", label="Download"):
    with open(file_path, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} πŸ“₯</a>'

def zip_directory(directory_path, zip_path):
    with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
        for root, _, files in os.walk(directory_path):
            for file in files:
                file_path = os.path.join(root, file)
                arcname = os.path.relpath(file_path, os.path.dirname(directory_path))
                zipf.write(file_path, arcname)

def get_model_files():
    return [d for d in glob.glob("models/*") if os.path.isdir(d)]

# Cargo Travel Time Tool
def calculate_cargo_travel_time(
    origin_coords: Tuple[float, float],
    destination_coords: Tuple[float, float],
    cruising_speed_kmh: float = 750.0
) -> float:
    def to_radians(degrees: float) -> float:
        return degrees * (math.pi / 180)
    lat1, lon1 = map(to_radians, origin_coords)
    lat2, lon2 = map(to_radians, destination_coords)
    EARTH_RADIUS_KM = 6371.0
    dlon = lon2 - lon1
    dlat = lat2 - lat1
    a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
    c = 2 * math.asin(math.sqrt(a))
    distance = EARTH_RADIUS_KM * c
    actual_distance = distance * 1.1
    flight_time = (actual_distance / cruising_speed_kmh) + 1.0
    return round(flight_time, 2)

# Main App
st.title("SFT Model Builder πŸ€–πŸš€")

# Sidebar for Model Management
st.sidebar.header("Model Management πŸ—‚οΈ")
model_dirs = get_model_files()
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)

if selected_model != "None" and st.sidebar.button("Load Model πŸ“‚"):
    if 'builder' not in st.session_state:
        st.session_state['builder'] = ModelBuilder()
    config = ModelConfig(name=os.path.basename(selected_model), base_model="unknown", size="small", domain="general")
    st.session_state['builder'].load_model(selected_model, config)
    st.session_state['model_loaded'] = True
    st.rerun()

# Main UI with Tabs
tab1, tab2, tab3, tab4 = st.tabs(["Build New Model 🌱", "Fine-Tune Model πŸ”§", "Test Model πŸ§ͺ", "Agentic RAG Demo 🌐"])

with tab1:
    st.header("Build New Model 🌱")
    base_model = st.selectbox(
        "Select Base Model",
        [
            "HuggingFaceTB/SmolLM-135M",  # ~270 MB
            "HuggingFaceTB/SmolLM-360M",  # ~720 MB
            "Qwen/Qwen1.5-0.5B-Chat",     # ~1 GB
            "TinyLlama/TinyLlama-1.1B-Chat-v1.0"  # ~2 GB, slightly over but included
        ],
        help="Choose a tiny, open-source model (<1 GB except TinyLlama)"
    )
    model_name = st.text_input("Model Name", f"new-model-{int(time.time())}")
    domain = st.text_input("Target Domain", "general")

    if st.button("Download Model ⬇️"):
        config = ModelConfig(name=model_name, base_model=base_model, size="small", domain=domain)
        builder = ModelBuilder()
        builder.load_model(base_model, config)
        builder.save_model(config.model_path)
        st.session_state['builder'] = builder
        st.session_state['model_loaded'] = True
        st.success(f"Model downloaded and saved to {config.model_path}! πŸŽ‰")
        st.rerun()

with tab2:
    st.header("Fine-Tune Model πŸ”§")
    if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
        st.warning("Please download or load a model first! ⚠️")
    else:
        if st.button("Generate Sample CSV πŸ“"):
            sample_data = [
                {"prompt": "What is AI?", "response": "AI is artificial intelligence, simulating human intelligence in machines."},
                {"prompt": "Explain machine learning", "response": "Machine learning is a subset of AI where models learn from data."},
                {"prompt": "What is a neural network?", "response": "A neural network is a model inspired by the human brain."},
            ]
            csv_path = f"sft_data_{int(time.time())}.csv"
            with open(csv_path, "w", newline="") as f:
                writer = csv.DictWriter(f, fieldnames=["prompt", "response"])
                writer.writeheader()
                writer.writerows(sample_data)
            st.markdown(get_download_link(csv_path, "text/csv", "Download Sample CSV"), unsafe_allow_html=True)
            st.success(f"Sample CSV generated as {csv_path}! βœ…")

        uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
        if uploaded_csv and st.button("Fine-Tune with Uploaded CSV πŸ”„"):
            csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
            with open(csv_path, "wb") as f:
                f.write(uploaded_csv.read())
            new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
            new_config = ModelConfig(
                name=new_model_name,
                base_model=st.session_state['builder'].config.base_model,
                size="small",
                domain=st.session_state['builder'].config.domain
            )
            st.session_state['builder'].config = new_config
            with st.status("Fine-tuning model... ⏳", expanded=True) as status:
                st.session_state['builder'].fine_tune_sft(csv_path)
                st.session_state['builder'].save_model(new_config.model_path)
                status.update(label="Fine-tuning completed! πŸŽ‰", state="complete")
            
            zip_path = f"{new_config.model_path}.zip"
            zip_directory(new_config.model_path, zip_path)
            st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Model"), unsafe_allow_html=True)
            st.rerun()

with tab3:
    st.header("Test Model πŸ§ͺ")
    if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
        st.warning("Please download or load a model first! ⚠️")
    else:
        if st.session_state['builder'].sft_data:
            st.write("Testing with SFT Data:")
            for item in st.session_state['builder'].sft_data[:3]:
                prompt = item["prompt"]
                expected = item["response"]
                generated = st.session_state['builder'].evaluate(prompt)
                st.write(f"**Prompt**: {prompt}")
                st.write(f"**Expected**: {expected}")
                st.write(f"**Generated**: {generated}")
                st.write("---")

        test_prompt = st.text_area("Enter Test Prompt", "What is AI?")
        if st.button("Run Test ▢️"):
            result = st.session_state['builder'].evaluate(test_prompt)
            st.write(f"**Generated Response**: {result}")

        if st.button("Export Model Files πŸ“¦"):
            config = st.session_state['builder'].config
            app_code = f"""
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("{config.model_path}")
tokenizer = AutoTokenizer.from_pretrained("{config.model_path}")

st.title("SFT Model Demo")
input_text = st.text_area("Enter prompt")
if st.button("Generate"):
    inputs = tokenizer(input_text, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
    st.write(tokenizer.decode(outputs[0], skip_special_tokens=True))
"""
            with open("sft_app.py", "w") as f:
                f.write(app_code)
            reqs = "streamlit\ntorch\ntransformers\n"
            with open("sft_requirements.txt", "w") as f:
                f.write(reqs)
            readme = f"""
# SFT Model Demo

## How to run
1. Install requirements: `pip install -r sft_requirements.txt`
2. Run the app: `streamlit run sft_app.py`
3. Input a prompt and click "Generate".
"""
            with open("sft_README.md", "w") as f:
                f.write(readme)
            
            st.markdown(get_download_link("sft_app.py", "text/plain", "Download App"), unsafe_allow_html=True)
            st.markdown(get_download_link("sft_requirements.txt", "text/plain", "Download Requirements"), unsafe_allow_html=True)
            st.markdown(get_download_link("sft_README.md", "text/markdown", "Download README"), unsafe_allow_html=True)
            st.success("Model files exported! βœ…")

with tab4:
    st.header("Agentic RAG Demo 🌐")
    st.write("This demo uses tiny models with Agentic RAG to plan a luxury superhero-themed party, enhancing retrieval with DuckDuckGo.")

    if st.button("Run Agentic RAG Demo πŸŽ‰"):
        try:
            from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool

            # Load selected tiny model
            tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-135M")
            model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-135M")

            # Define Agentic RAG agent
            agent = CodeAgent(
                model=model,
                tokenizer=tokenizer,
                tools=[DuckDuckGoSearchTool(), VisitWebpageTool(), calculate_cargo_travel_time],
                additional_authorized_imports=["pandas"],
                planning_interval=5,
                verbosity_level=2,
                max_steps=15,
            )
            
            task = """
Plan a luxury superhero-themed party at Wayne Manor (42.3601Β° N, 71.0589Β° W). Search for the latest superhero party trends using DuckDuckGo,
refine results to include luxury elements (decorations, entertainment, catering), and calculate cargo travel times from key locations 
(e.g., New York, LA, London) to Wayne Manor. Synthesize a complete plan and return it as a pandas dataframe with at least 6 entries 
including locations, travel times, and luxury party ideas.
"""
            with st.spinner("Running Agentic RAG system... ⏳"):
                result = agent.run(task)
            st.write("Agentic RAG Result:")
            st.write(result)
        except ImportError:
            st.error("Please install required packages: `pip install smolagents pandas`")
        except Exception as e:
            st.error(f"Error running demo: {str(e)}")