#!/usr/bin/env python3 import os import base64 import streamlit as st import csv import time from dataclasses import dataclass import zipfile import logging import cv2 from PIL import Image import numpy as np # Logging setup logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) log_records = [] class LogCaptureHandler(logging.Handler): def emit(self, record): log_records.append(record) logger.addHandler(LogCaptureHandler()) st.set_page_config(page_title="SFT Tiny Titans πŸš€", page_icon="πŸ€–", layout="wide", initial_sidebar_state="expanded") # Model Configurations @dataclass class ModelConfig: name: str base_model: str model_type: str = "causal_lm" @property def model_path(self): return f"models/{self.name}" @dataclass class DiffusionConfig: name: str base_model: str @property def model_path(self): return f"diffusion_models/{self.name}" # Lazy-loaded Builders class ModelBuilder: def __init__(self): self.config = None self.model = None self.tokenizer = None def load_model(self, model_path: str, config: ModelConfig): try: from transformers import AutoModelForCausalLM, AutoTokenizer import torch logger.info(f"Loading NLP model: {model_path}") self.model = AutoModelForCausalLM.from_pretrained(model_path) self.tokenizer = AutoTokenizer.from_pretrained(model_path) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token self.config = config self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) logger.info("NLP model loaded successfully") except Exception as e: logger.error(f"Error loading NLP model: {str(e)}") raise def fine_tune(self, csv_path): try: from torch.utils.data import Dataset, DataLoader import torch logger.info(f"Starting NLP fine-tuning with {csv_path}") class SFTDataset(Dataset): def __init__(self, data, tokenizer): self.data = data self.tokenizer = tokenizer def __len__(self): return len(self.data) def __getitem__(self, idx): prompt = self.data[idx]["prompt"] response = self.data[idx]["response"] inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True) labels = inputs["input_ids"].clone() labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100 return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]} data = [] with open(csv_path, "r") as f: reader = csv.DictReader(f) for row in reader: data.append({"prompt": row["prompt"], "response": row["response"]}) dataset = SFTDataset(data, self.tokenizer) dataloader = DataLoader(dataset, batch_size=2) optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5) self.model.train() for _ in range(1): for batch in dataloader: optimizer.zero_grad() outputs = self.model(**{k: v.to(self.model.device) for k, v in batch.items()}) outputs.loss.backward() optimizer.step() logger.info("NLP fine-tuning completed") except Exception as e: logger.error(f"Error in NLP fine-tuning: {str(e)}") raise def evaluate(self, prompt: str): try: import torch logger.info(f"Evaluating NLP with prompt: {prompt}") self.model.eval() with torch.no_grad(): inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device) outputs = self.model.generate(**inputs, max_new_tokens=50) result = self.tokenizer.decode(outputs[0], skip_special_tokens=True) logger.info(f"NLP evaluation result: {result}") return result except Exception as e: logger.error(f"Error in NLP evaluation: {str(e)}") raise class DiffusionBuilder: def __init__(self): self.config = None self.pipeline = None def load_model(self, model_path: str, config: DiffusionConfig): try: from diffusers import StableDiffusionPipeline import torch logger.info(f"Loading diffusion model: {model_path}") self.pipeline = StableDiffusionPipeline.from_pretrained(model_path) self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) self.config = config logger.info("Diffusion model loaded successfully") except Exception as e: logger.error(f"Error loading diffusion model: {str(e)}") raise def fine_tune(self, images, texts): try: import torch from PIL import Image import numpy as np logger.info("Starting diffusion fine-tuning") optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5) self.pipeline.unet.train() for _ in range(1): for img, text in zip(images, texts): optimizer.zero_grad() img_tensor = torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device) / 255.0 latents = self.pipeline.vae.encode(img_tensor).latent_dist.sample() noise = torch.randn_like(latents) timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (1,), device=latents.device) noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps) text_emb = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0] pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample loss = torch.nn.functional.mse_loss(pred_noise, noise) loss.backward() optimizer.step() logger.info("Diffusion fine-tuning completed") except Exception as e: logger.error(f"Error in diffusion fine-tuning: {str(e)}") raise def generate(self, prompt: str): try: logger.info(f"Generating image with prompt: {prompt}") img = self.pipeline(prompt, num_inference_steps=20).images[0] logger.info("Image generated successfully") return img except Exception as e: logger.error(f"Error in image generation: {str(e)}") raise # Utilities def get_download_link(file_path, mime_type="text/plain", label="Download"): with open(file_path, 'rb') as f: data = f.read() b64 = base64.b64encode(data).decode() return f'{label} πŸ“₯' def generate_filename(sequence, ext="png"): from datetime import datetime import pytz central = pytz.timezone('US/Central') timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p") return f"{sequence}{timestamp}.{ext}" def get_gallery_files(file_types): import glob return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")]) def zip_files(files, zip_name): with zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED) as zipf: for file in files: zipf.write(file, os.path.basename(file)) return zip_name # Main App st.title("SFT Tiny Titans πŸš€ (Dual Cam Action!)") # Sidebar Galleries st.sidebar.header("Captured Media 🎨") gallery_container = st.sidebar.empty() def update_gallery(): media_files = get_gallery_files(["png", "mp4"]) with gallery_container: if media_files: cols = st.columns(2) for idx, file in enumerate(media_files[:4]): with cols[idx % 2]: if file.endswith(".png"): st.image(Image.open(file), caption=file.split('/')[-1], use_container_width=True) elif file.endswith(".mp4"): st.video(file) # Sidebar Model Management st.sidebar.subheader("Model Hub πŸ—‚οΈ") model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"]) model_options = { "NLP (Causal LM)": "HuggingFaceTB/SmolLM-135M", "CV (Diffusion)": ["CompVis/stable-diffusion-v1-4", "stabilityai/stable-diffusion-2-base", "runwayml/stable-diffusion-v1-5"] } selected_model = st.sidebar.selectbox("Select Model", ["None"] + ([model_options[model_type]] if "NLP" in model_type else model_options[model_type])) if selected_model != "None" and st.sidebar.button("Load Model πŸ“‚"): builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model) with st.spinner("Loading... ⏳"): try: builder.load_model(selected_model, config) st.session_state['builder'] = builder st.session_state['model_loaded'] = True st.success("Model loaded! πŸŽ‰") except Exception as e: st.error(f"Load failed: {str(e)}") # Tabs tab1, tab2, tab3, tab4 = st.tabs(["Build Titan 🌱", "Camera Snap πŸ“·", "Fine-Tune Titans πŸ”§", "Test Titans πŸ§ͺ"]) with tab1: st.header("Build Titan 🌱 (Quick Start!)") model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type") base_model = st.selectbox("Select Model", model_options[model_type], key="build_model") if st.button("Download Model ⬇️"): config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model) builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder() with st.spinner("Fetching... ⏳"): try: builder.load_model(base_model, config) st.session_state['builder'] = builder st.session_state['model_loaded'] = True st.success("Titan up! πŸŽ‰") except Exception as e: st.error(f"Download failed: {str(e)}") with tab2: st.header("Camera Snap πŸ“· (Dual Live Feed!)") caps = {0: cv2.VideoCapture(0), 1: cv2.VideoCapture(1)} cols = st.columns(2) for i in range(2): with cols[i]: st.subheader(f"Camera {i}") if caps[i].isOpened(): ret, frame = caps[i].read() if ret: frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) st.image(frame_rgb, caption=f"Live Feed Cam {i}", use_container_width=True) else: st.warning(f"Camera {i} failed to read frame!") logger.error(f"Failed to read frame from Camera {i}") else: st.warning(f"Camera {i} not detected!") logger.error(f"Camera {i} not opened") if st.button(f"Capture Frame πŸ“Έ Cam {i}", key=f"snap_{i}"): logger.info(f"Capturing frame from Camera {i}") try: ret, frame = caps[i].read() if ret: frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) img = Image.fromarray(frame_rgb) filename = generate_filename(i) img.save(filename) st.image(img, caption=filename, use_container_width=True) logger.info(f"Saved snapshot: {filename}") if 'captured_images' not in st.session_state: st.session_state['captured_images'] = [] st.session_state['captured_images'].append(filename) update_gallery() else: st.error("Failed to capture frame!") logger.error(f"No frame captured from Camera {i}") except Exception as e: st.error(f"Frame capture failed: {str(e)}") logger.error(f"Error capturing frame: {str(e)}") if st.button(f"Capture Video πŸŽ₯ Cam {i}", key=f"rec_{i}"): logger.info(f"Capturing 10s video from Camera {i}") try: fourcc = cv2.VideoWriter_fourcc(*'mp4v') mp4_filename = generate_filename(i, "mp4") out = cv2.VideoWriter(mp4_filename, fourcc, 30.0, (int(caps[i].get(3)), int(caps[i].get(4)))) frames = [] start_time = time.time() while time.time() - start_time < 10: ret, frame = caps[i].read() if ret: frames.append(frame) out.write(frame) time.sleep(0.033) # ~30 FPS out.release() st.video(mp4_filename) logger.info(f"Saved video: {mp4_filename}") # Slice into 10 frames sliced_images = [] step = max(1, len(frames) // 10) for j in range(0, len(frames), step): if len(sliced_images) < 10: frame_rgb = cv2.cvtColor(frames[j], cv2.COLOR_BGR2RGB) img = Image.fromarray(frame_rgb) img_filename = generate_filename(f"{i}_{len(sliced_images)}") img.save(img_filename) sliced_images.append(img_filename) st.image(img, caption=img_filename, use_container_width=True) st.session_state['captured_images'] = st.session_state.get('captured_images', []) + sliced_images logger.info(f"Sliced video into {len(sliced_images)} images") update_gallery() except Exception as e: st.error(f"Video capture failed: {str(e)}") logger.error(f"Error capturing video: {str(e)}") # Release cameras after use for cap in caps.values(): cap.release() with tab3: st.header("Fine-Tune Titans πŸ”§ (Tune Fast!)") if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): st.warning("Load a Titan first! ⚠️") else: if isinstance(st.session_state['builder'], ModelBuilder): st.subheader("NLP Tune 🧠") uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv") if uploaded_csv and st.button("Tune NLP πŸ”„"): logger.info("Initiating NLP fine-tune") try: with open("temp.csv", "wb") as f: f.write(uploaded_csv.read()) st.session_state['builder'].fine_tune("temp.csv") st.success("NLP sharpened! πŸŽ‰") except Exception as e: st.error(f"NLP fine-tune failed: {str(e)}") elif isinstance(st.session_state['builder'], DiffusionBuilder): st.subheader("CV Tune 🎨") captured_images = get_gallery_files(["png"]) if len(captured_images) >= 2: texts = ["Superhero Neon", "Hero Glow", "Cape Spark"][:len(captured_images)] if st.button("Tune CV πŸ”„"): logger.info("Initiating CV fine-tune") try: images = [Image.open(img) for img in captured_images] st.session_state['builder'].fine_tune(images, texts) st.success("CV polished! πŸŽ‰") except Exception as e: st.error(f"CV fine-tune failed: {str(e)}") else: st.warning("Capture at least 2 images first! ⚠️") with tab4: st.header("Test Titans πŸ§ͺ (Image Agent Demo!)") if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False): st.warning("Load a Titan first! ⚠️") else: if isinstance(st.session_state['builder'], ModelBuilder): st.subheader("NLP Test 🧠") prompt = st.text_area("Prompt", "What’s a superhero?", key="nlp_test") if st.button("Test NLP ▢️"): logger.info("Running NLP test") try: result = st.session_state['builder'].evaluate(prompt) st.write(f"**Answer**: {result}") except Exception as e: st.error(f"NLP test failed: {str(e)}") elif isinstance(st.session_state['builder'], DiffusionBuilder): st.subheader("CV Test 🎨 (Image Set Demo)") captured_images = get_gallery_files(["png"]) if len(captured_images) >= 2: if st.button("Run CV Demo ▢️"): logger.info("Running CV image set demo") try: images = [Image.open(img) for img in captured_images[:10]] prompts = ["Neon " + os.path.basename(img).split('.')[0] for img in captured_images[:10]] generated_images = [] for prompt in prompts: img = st.session_state['builder'].generate(prompt) generated_images.append(img) cols = st.columns(2) for idx, (orig, gen) in enumerate(zip(images, generated_images)): with cols[idx % 2]: st.image(orig, caption=f"Original: {captured_images[idx]}", use_container_width=True) st.image(gen, caption=f"Generated: {prompts[idx]}", use_container_width=True) md_content = "# Image Set Demo\n\nScript of filenames and descriptions:\n" for i, (img, prompt) in enumerate(zip(captured_images[:10], prompts)): md_content += f"{i+1}. `{img}` - {prompt}\n" md_filename = f"demo_metadata_{int(time.time())}.md" with open(md_filename, "w") as f: f.write(md_content) st.markdown(get_download_link(md_filename, "text/markdown", "Download Metadata .md"), unsafe_allow_html=True) logger.info("CV demo completed with metadata") except Exception as e: st.error(f"CV demo failed: {str(e)}") logger.error(f"Error in CV demo: {str(e)}") else: st.warning("Capture at least 2 images first! ⚠️") # Display Logs st.sidebar.subheader("Action Logs πŸ“œ") log_container = st.sidebar.empty() with log_container: for record in log_records: st.write(f"{record.asctime} - {record.levelname} - {record.message}") update_gallery() # Initial gallery update