Update app.py
Browse files
app.py
CHANGED
@@ -5,20 +5,21 @@ import base64
|
|
5 |
import streamlit as st
|
6 |
import pandas as pd
|
7 |
import torch
|
|
|
8 |
from torch.utils.data import Dataset, DataLoader
|
9 |
import csv
|
10 |
import time
|
11 |
from dataclasses import dataclass
|
12 |
-
from typing import Optional
|
13 |
import zipfile
|
14 |
import math
|
15 |
from PIL import Image
|
16 |
import random
|
17 |
import logging
|
18 |
import numpy as np
|
19 |
-
import
|
20 |
-
from diffusers import DiffusionPipeline
|
21 |
|
|
|
22 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
23 |
logger = logging.getLogger(__name__)
|
24 |
log_records = []
|
@@ -29,6 +30,7 @@ class LogCaptureHandler(logging.Handler):
|
|
29 |
|
30 |
logger.addHandler(LogCaptureHandler())
|
31 |
|
|
|
32 |
st.set_page_config(
|
33 |
page_title="SFT Tiny Titans 🚀",
|
34 |
page_icon="🤖",
|
@@ -37,22 +39,32 @@ st.set_page_config(
|
|
37 |
menu_items={
|
38 |
'Get Help': 'https://huggingface.co/awacke1',
|
39 |
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
|
40 |
-
'About': "Tiny Titans: Small
|
41 |
}
|
42 |
)
|
43 |
|
|
|
44 |
if 'captured_images' not in st.session_state:
|
45 |
st.session_state['captured_images'] = []
|
46 |
-
if '
|
47 |
-
st.session_state['
|
48 |
-
if '
|
49 |
-
st.session_state['
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
@dataclass
|
54 |
class DiffusionConfig:
|
55 |
-
"""Config for our diffusion heroes 🦸♂️ - Keeps the blueprint snappy!"""
|
56 |
name: str
|
57 |
base_model: str
|
58 |
size: str
|
@@ -60,8 +72,29 @@ class DiffusionConfig:
|
|
60 |
def model_path(self):
|
61 |
return f"diffusion_models/{self.name}"
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
class DiffusionDataset(Dataset):
|
64 |
-
"""Pixel party platter 🍕 - Images and text for diffusion delight!"""
|
65 |
def __init__(self, images, texts):
|
66 |
self.images = images
|
67 |
self.texts = texts
|
@@ -70,591 +103,417 @@ class DiffusionDataset(Dataset):
|
|
70 |
def __getitem__(self, idx):
|
71 |
return {"image": self.images[idx], "text": self.texts[idx]}
|
72 |
|
73 |
-
|
74 |
-
|
75 |
def __init__(self):
|
76 |
self.config = None
|
77 |
-
self.
|
78 |
-
self.
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
raise
|
92 |
return self
|
93 |
-
def fine_tune_sft(self,
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
except Exception as e:
|
121 |
-
st.error(f"Tuning failed: {str(e)} 💥 (Micro snag!)")
|
122 |
-
logger.error(f"Tuning failed: {str(e)}")
|
123 |
-
raise
|
124 |
return self
|
125 |
def save_model(self, path: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
try:
|
127 |
-
with
|
128 |
-
|
129 |
-
self.
|
130 |
-
|
131 |
-
logger.info(f"Saved at {path}")
|
132 |
-
except Exception as e:
|
133 |
-
st.error(f"Save failed: {str(e)} 💥 (Packing mishap!)")
|
134 |
-
logger.error(f"Save failed: {str(e)}")
|
135 |
-
raise
|
136 |
-
def generate(self, prompt: str):
|
137 |
-
try:
|
138 |
-
return self.pipeline(prompt, num_inference_steps=20).images[0]
|
139 |
except Exception as e:
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
|
144 |
-
class
|
145 |
-
"""Scaled-down dreamer 🌙 - Latent magic for efficient artistry!"""
|
146 |
def __init__(self):
|
147 |
self.config = None
|
148 |
self.pipeline = None
|
149 |
-
self.
|
150 |
-
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
151 |
-
|
152 |
-
|
153 |
-
self.pipeline =
|
154 |
-
|
155 |
-
self.pipeline.
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
st.error(f"Failed to load {model_path}: {str(e)} 💥 (Latent hiccup!)")
|
162 |
-
logger.error(f"Failed to load {model_path}: {str(e)}")
|
163 |
-
raise
|
164 |
return self
|
165 |
def fine_tune_sft(self, images, texts, epochs=3):
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
st.write(f"Epoch {epoch + 1} done! Loss: {total_loss / len(dataloader):.4f}")
|
190 |
-
st.success(f"Latent Diffusion tuned! 🎉 {random.choice(self.jokes)}")
|
191 |
-
logger.info(f"Fine-tuned Latent Diffusion: {self.config.name}")
|
192 |
-
except Exception as e:
|
193 |
-
st.error(f"Tuning failed: {str(e)} 💥 (Latent snag!)")
|
194 |
-
logger.error(f"Tuning failed: {str(e)}")
|
195 |
-
raise
|
196 |
return self
|
197 |
def save_model(self, path: str):
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
except Exception as e:
|
205 |
-
st.error(f"Save failed: {str(e)} 💥 (Dreamy mishap!)")
|
206 |
-
logger.error(f"Save failed: {str(e)}")
|
207 |
-
raise
|
208 |
-
def generate(self, prompt: str):
|
209 |
-
try:
|
210 |
-
return self.pipeline(prompt, num_inference_steps=30).images[0]
|
211 |
-
except Exception as e:
|
212 |
-
st.error(f"Generation failed: {str(e)} 💥 (Latent oopsie!)")
|
213 |
-
logger.error(f"Generation failed: {str(e)}")
|
214 |
-
raise
|
215 |
-
|
216 |
-
class FluxDiffusionBuilder:
|
217 |
-
"""Distilled dynamo ⚡ - High-quality pixels in a small package!"""
|
218 |
-
def __init__(self):
|
219 |
-
self.config = None
|
220 |
-
self.pipeline = None
|
221 |
-
self.jokes = ["Flux-tastic! ✨", "Small size, big wow! 🎇"]
|
222 |
-
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
|
223 |
-
try:
|
224 |
-
with st.spinner(f"Loading {model_path}... ⏳ (Flux titan charging!)"):
|
225 |
-
self.pipeline = DiffusionPipeline.from_pretrained(model_path, low_cpu_mem_usage=True)
|
226 |
-
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
|
227 |
-
if config:
|
228 |
-
self.config = config
|
229 |
-
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
230 |
-
logger.info(f"Loaded FLUX.1 Distilled: {model_path}")
|
231 |
-
except Exception as e:
|
232 |
-
st.error(f"Failed to load {model_path}: {str(e)} 💥 (Flux fizzle!)")
|
233 |
-
logger.error(f"Failed to load {model_path}: {str(e)}")
|
234 |
-
raise
|
235 |
-
return self
|
236 |
-
def fine_tune_sft(self, images, texts, epochs=3):
|
237 |
-
try:
|
238 |
-
dataset = DiffusionDataset(images, texts)
|
239 |
-
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
240 |
-
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
|
241 |
-
self.pipeline.unet.train()
|
242 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
243 |
-
for epoch in range(epochs):
|
244 |
-
with st.spinner(f"Epoch {epoch + 1}/{epochs}... ⚙️ (Flux titan powering up!)"):
|
245 |
-
total_loss = 0
|
246 |
-
for batch in dataloader:
|
247 |
-
optimizer.zero_grad()
|
248 |
-
image = batch["image"][0].to(device)
|
249 |
-
text = batch["text"][0]
|
250 |
-
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(device)).latent_dist.sample()
|
251 |
-
noise = torch.randn_like(latents)
|
252 |
-
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
|
253 |
-
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
|
254 |
-
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(device))[0]
|
255 |
-
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
|
256 |
-
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
257 |
-
loss.backward()
|
258 |
-
optimizer.step()
|
259 |
-
total_loss += loss.item()
|
260 |
-
st.write(f"Epoch {epoch + 1} done! Loss: {total_loss / len(dataloader):.4f}")
|
261 |
-
st.success(f"FLUX Diffusion tuned! 🎉 {random.choice(self.jokes)}")
|
262 |
-
logger.info(f"Fine-tuned FLUX.1 Distilled: {self.config.name}")
|
263 |
-
except Exception as e:
|
264 |
-
st.error(f"Tuning failed: {str(e)} 💥 (Flux snag!)")
|
265 |
-
logger.error(f"Tuning failed: {str(e)}")
|
266 |
-
raise
|
267 |
-
return self
|
268 |
-
def save_model(self, path: str):
|
269 |
-
try:
|
270 |
-
with st.spinner("Saving model... 💾 (Packing flux magic!)"):
|
271 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
272 |
-
self.pipeline.save_pretrained(path)
|
273 |
-
st.success(f"Saved at {path}! ✅ Flux titan secured!")
|
274 |
-
logger.info(f"Saved at {path}")
|
275 |
-
except Exception as e:
|
276 |
-
st.error(f"Save failed: {str(e)} 💥 (Fluxy mishap!)")
|
277 |
-
logger.error(f"Save failed: {str(e)}")
|
278 |
-
raise
|
279 |
-
def generate(self, prompt: str):
|
280 |
-
try:
|
281 |
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
282 |
-
|
283 |
-
|
284 |
-
logger.error(f"Generation failed: {str(e)}")
|
285 |
-
raise
|
286 |
|
|
|
287 |
def generate_filename(sequence, ext="png"):
|
288 |
-
"""Time-stamped snapshots ⏰ - Keeps our pics organized with cam flair!"""
|
289 |
from datetime import datetime
|
290 |
import pytz
|
291 |
central = pytz.timezone('US/Central')
|
292 |
-
|
293 |
-
return f"{
|
294 |
|
295 |
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
return f"Error: Could not generate link for {file_path}"
|
305 |
-
|
306 |
-
def zip_files(files, zip_path):
|
307 |
-
"""Zip zap zoo 🎒 - Bundle up your goodies!"""
|
308 |
-
try:
|
309 |
-
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
310 |
for file in files:
|
311 |
-
zipf.write(file, os.path.
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
def delete_files(files):
|
318 |
-
"""Trash titan 🗑️ - Clear the stage for new stars!"""
|
319 |
-
try:
|
320 |
-
for file in files:
|
321 |
-
os.remove(file)
|
322 |
-
logger.info(f"Deleted file: {file}")
|
323 |
-
st.session_state['captured_images'] = [f for f in st.session_state['captured_images'] if f not in files]
|
324 |
-
except Exception as e:
|
325 |
-
logger.error(f"Failed to delete files: {str(e)}")
|
326 |
-
raise
|
327 |
-
|
328 |
-
def get_model_files():
|
329 |
-
"""Model treasure hunt 🗺️ - Find our diffusion gems!"""
|
330 |
-
return [d for d in glob.glob("diffusion_models/*") if os.path.isdir(d)]
|
331 |
|
332 |
def get_gallery_files(file_types):
|
333 |
-
|
334 |
-
return sorted(list(set(f for ext in file_types for f in glob.glob(f"*.{ext}"))))
|
335 |
|
336 |
def update_gallery():
|
337 |
-
"""Gallery refresh 🌟 - Keep the art flowing!"""
|
338 |
media_files = get_gallery_files(["png"])
|
339 |
if media_files:
|
340 |
cols = st.sidebar.columns(2)
|
341 |
for idx, file in enumerate(media_files[:gallery_size * 2]):
|
342 |
with cols[idx % 2]:
|
343 |
st.image(Image.open(file), caption=file, use_container_width=True)
|
344 |
-
st.markdown(get_download_link(file, "image/png", "Download
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
st.sidebar.header("Media Gallery 🎨")
|
370 |
-
gallery_size = st.sidebar.slider("Gallery Size
|
371 |
update_gallery()
|
372 |
|
373 |
-
col1, col2 = st.sidebar.columns(2)
|
374 |
-
with col1:
|
375 |
-
if st.button("Download All 📦"):
|
376 |
-
media_files = get_gallery_files(["png"])
|
377 |
-
if media_files:
|
378 |
-
zip_path = f"snapshot_collection_{int(time.time())}.zip"
|
379 |
-
zip_files(media_files, zip_path)
|
380 |
-
st.sidebar.markdown(get_download_link(zip_path, "application/zip", "Download All Snaps 📦"), unsafe_allow_html=True)
|
381 |
-
st.sidebar.success("Snaps zipped! 🎉 Grab your loot!")
|
382 |
-
else:
|
383 |
-
st.sidebar.warning("No snaps to zip! 📸 Snap some first!")
|
384 |
-
with col2:
|
385 |
-
if st.button("Delete All 🗑️"):
|
386 |
-
media_files = get_gallery_files(["png"])
|
387 |
-
if media_files:
|
388 |
-
delete_files(media_files)
|
389 |
-
st.sidebar.success("Snaps vanquished! 🧹 Gallery cleared!")
|
390 |
-
update_gallery()
|
391 |
-
else:
|
392 |
-
st.sidebar.warning("Nothing to delete! 📸 Snap some pics!")
|
393 |
-
|
394 |
-
uploaded_files = st.sidebar.file_uploader("Upload Goodies 🎵🎥🖼️📝📜", type=["mp3", "mp4", "png", "jpeg", "md", "pdf", "docx"], accept_multiple_files=True)
|
395 |
-
if uploaded_files:
|
396 |
-
for uploaded_file in uploaded_files:
|
397 |
-
filename = uploaded_file.name
|
398 |
-
with open(filename, "wb") as f:
|
399 |
-
f.write(uploaded_file.getvalue())
|
400 |
-
logger.info(f"Uploaded file: {filename}")
|
401 |
-
|
402 |
-
st.sidebar.subheader("Image Gallery 🖼️")
|
403 |
-
image_files = get_gallery_files(["png", "jpeg"])
|
404 |
-
if image_files:
|
405 |
-
cols = st.sidebar.columns(2)
|
406 |
-
for idx, file in enumerate(image_files[:gallery_size * 2]):
|
407 |
-
with cols[idx % 2]:
|
408 |
-
st.image(Image.open(file), caption=file, use_container_width=True)
|
409 |
-
st.markdown(get_download_link(file, "image/png" if file.endswith(".png") else "image/jpeg", f"Save Pic 🖼️"), unsafe_allow_html=True)
|
410 |
-
|
411 |
st.sidebar.subheader("Model Management 🗂️")
|
412 |
-
|
|
|
413 |
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
|
414 |
-
model_type = st.sidebar.selectbox("Diffusion Type", ["Micro Diffusion", "Latent Diffusion", "FLUX.1 Distilled"])
|
415 |
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
416 |
-
builder =
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
try:
|
423 |
-
builder.load_model(selected_model, config)
|
424 |
-
st.session_state['cv_builder'] = builder
|
425 |
-
st.session_state['cv_loaded'] = True
|
426 |
-
st.rerun()
|
427 |
-
except Exception as e:
|
428 |
-
st.error(f"Model load failed: {str(e)} 💥 (Check logs for details!)")
|
429 |
-
|
430 |
-
st.sidebar.subheader("Model Status 🚦")
|
431 |
-
st.sidebar.write(f"**CV Model**: {'Loaded' if st.session_state['cv_loaded'] else 'Not Loaded'} {'(Active)' if st.session_state['cv_loaded'] and isinstance(st.session_state.get('cv_builder'), (MicroDiffusionBuilder, LatentDiffusionBuilder, FluxDiffusionBuilder)) else ''}")
|
432 |
-
|
433 |
-
tabs = ["Build Titan 🌱", "Camera Snap 📷", "Fine-Tune Titan (CV) 🔧", "Test Titan (CV) 🧪", "Agentic RAG Party (CV) 🌐"]
|
434 |
-
tab1, tab2, tab3, tab4, tab5 = st.tabs(tabs)
|
435 |
|
436 |
-
|
437 |
-
|
438 |
-
logger.info(f"Switched to tab: {tab}")
|
439 |
-
st.session_state['active_tab'] = tab
|
440 |
-
st.session_state[f'tab{i}_active'] = (st.session_state['active_tab'] == tab)
|
441 |
|
442 |
with tab1:
|
443 |
-
st.header("
|
444 |
-
|
445 |
-
|
446 |
-
["CompVis/ldm-text2im-large-256" if model_type == "Micro Diffusion" else "runwayml/stable-diffusion-v1-5" if model_type == "Latent Diffusion" else "black-forest-labs/flux.1-distilled"])
|
447 |
-
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
448 |
-
if st.button("Download Model ⬇️"):
|
449 |
-
config = DiffusionConfig(name=model_name, base_model=base_model, size="small")
|
450 |
-
builder = {
|
451 |
-
"Micro Diffusion": MicroDiffusionBuilder,
|
452 |
-
"Latent Diffusion": LatentDiffusionBuilder,
|
453 |
-
"FLUX.1 Distilled": FluxDiffusionBuilder
|
454 |
-
}[model_type]()
|
455 |
-
try:
|
456 |
-
builder.load_model(base_model, config)
|
457 |
-
builder.save_model(config.model_path)
|
458 |
-
st.session_state['cv_builder'] = builder
|
459 |
-
st.session_state['cv_loaded'] = True
|
460 |
-
st.rerun()
|
461 |
-
except Exception as e:
|
462 |
-
st.error(f"Model build failed: {str(e)} 💥 (Check logs for details!)")
|
463 |
-
|
464 |
-
with tab2:
|
465 |
-
st.header("Camera Snap 📷 (Dual Capture Fiesta!)")
|
466 |
-
video_devices = get_available_video_devices()
|
467 |
-
st.write(f"🎉 Detected Cameras: {', '.join(video_devices)}")
|
468 |
-
st.info("Switch cams in your browser settings (e.g., Chrome > Privacy > Camera) since I’m a browser star! 🌟")
|
469 |
-
|
470 |
-
st.subheader("Camera 0 🎬 - Lights, Camera, Action!")
|
471 |
-
cam0_cols = st.columns(4)
|
472 |
-
with cam0_cols[0]:
|
473 |
-
cam0_device = st.selectbox("Cam 📷", video_devices, index=0, key="cam0_device", help="Pick your star cam! 🌟")
|
474 |
-
with cam0_cols[1]:
|
475 |
-
cam0_label = st.text_input("Tag 🏷️", "Cam 0 Snap", key="cam0_label", help="Name your masterpiece! 🎨")
|
476 |
-
with cam0_cols[2]:
|
477 |
-
cam0_help = st.text_input("Hint 💡", "Snap a heroic moment! 🦸♂️", key="cam0_help", help="Give a fun tip!")
|
478 |
-
with cam0_cols[3]:
|
479 |
-
cam0_vis = st.selectbox("Show 🖼️", ["visible", "hidden", "collapsed"], index=0, key="cam0_vis", help="Label vibes: Visible, Sneaky, or Gone!")
|
480 |
-
|
481 |
-
st.subheader("Camera 1 🎥 - Roll the Film!")
|
482 |
-
cam1_cols = st.columns(4)
|
483 |
-
with cam1_cols[0]:
|
484 |
-
cam1_device = st.selectbox("Cam 📷", video_devices, index=1 if len(video_devices) > 1 else 0, key="cam1_device", help="Choose your blockbuster cam! 🎬")
|
485 |
-
with cam1_cols[1]:
|
486 |
-
cam1_label = st.text_input("Tag 🏷️", "Cam 1 Snap", key="cam1_label", help="Title your epic shot! 🌠")
|
487 |
-
with cam1_cols[2]:
|
488 |
-
cam1_help = st.text_input("Hint 💡", "Grab an epic frame! 🌟", key="cam1_help", help="Drop a cheeky hint!")
|
489 |
-
with cam1_cols[3]:
|
490 |
-
cam1_vis = st.selectbox("Show 🖼️", ["visible", "hidden", "collapsed"], index=0, key="cam1_vis", help="Label style: Show it, Hide it, Poof!")
|
491 |
-
|
492 |
cols = st.columns(2)
|
493 |
with cols[0]:
|
494 |
-
st.subheader(
|
495 |
-
cam0_img = st.camera_input(
|
496 |
-
label=cam0_label,
|
497 |
-
key="cam0",
|
498 |
-
help=cam0_help,
|
499 |
-
disabled=False,
|
500 |
-
label_visibility=cam0_vis
|
501 |
-
)
|
502 |
if cam0_img:
|
503 |
-
filename = generate_filename(
|
504 |
with open(filename, "wb") as f:
|
505 |
f.write(cam0_img.getvalue())
|
506 |
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
507 |
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
508 |
st.session_state['captured_images'].append(filename)
|
509 |
update_gallery()
|
510 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
with cols[1]:
|
512 |
-
st.subheader(
|
513 |
-
cam1_img = st.camera_input(
|
514 |
-
label=cam1_label,
|
515 |
-
key="cam1",
|
516 |
-
help=cam1_help,
|
517 |
-
disabled=False,
|
518 |
-
label_visibility=cam1_vis
|
519 |
-
)
|
520 |
if cam1_img:
|
521 |
-
filename = generate_filename(
|
522 |
with open(filename, "wb") as f:
|
523 |
f.write(cam1_img.getvalue())
|
524 |
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
525 |
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
526 |
st.session_state['captured_images'].append(filename)
|
527 |
update_gallery()
|
528 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
|
530 |
-
with
|
531 |
-
st.header("Fine-Tune Titan
|
532 |
-
if not st.session_state
|
533 |
-
st.warning("Please build or load a
|
534 |
else:
|
535 |
-
|
536 |
-
|
537 |
-
st.
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
st.session_state['
|
546 |
-
with st.status("Fine-tuning for denoising... ⏳ (Polishing pixels!)", expanded=True) as status:
|
547 |
-
st.session_state['cv_builder'].fine_tune_sft(images, texts)
|
548 |
-
st.session_state['cv_builder'].save_model(new_config.model_path)
|
549 |
-
status.update(label="Denoising tuned! 🎉 (Pixel shine unleashed!)", state="complete")
|
550 |
-
zip_path = f"{new_config.model_path}.zip"
|
551 |
-
zip_files([new_config.model_path], zip_path)
|
552 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download Denoised Titan 📦"), unsafe_allow_html=True)
|
553 |
-
denoising_csv = f"denoise_dataset_{int(time.time())}.csv"
|
554 |
-
with open(denoising_csv, "w", newline="") as f:
|
555 |
-
writer = csv.writer(f)
|
556 |
-
writer.writerow(["image", "text"])
|
557 |
-
for _, row in denoising_edited.iterrows():
|
558 |
-
writer.writerow([row["image"], row["text"]])
|
559 |
-
st.markdown(get_download_link(denoising_csv, "text/csv", "Download Denoising CSV 📜"), unsafe_allow_html=True)
|
560 |
-
|
561 |
-
st.subheader("Use Case 2: Stylize Snapshots 🎨")
|
562 |
-
stylize_data = [{"image": img, "text": f"Neon {os.path.basename(img).split('-')[4]} style"} for img in captured_images[:min(len(captured_images), 10)]]
|
563 |
-
stylize_edited = st.data_editor(pd.DataFrame(stylize_data), num_rows="dynamic", help="Craft stylized pairs! 🎨")
|
564 |
-
if st.button("Fine-Tune Stylization 🔄"):
|
565 |
-
images = [Image.open(row["image"]) for _, row in stylize_edited.iterrows()]
|
566 |
-
texts = [row["text"] for _, row in stylize_edited.iterrows()]
|
567 |
-
new_model_name = f"{st.session_state['cv_builder'].config.name}-stylize-{int(time.time())}"
|
568 |
-
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small")
|
569 |
-
st.session_state['cv_builder'].config = new_config
|
570 |
-
with st.status("Fine-tuning for stylization... ⏳ (Painting pixels!)", expanded=True) as status:
|
571 |
-
st.session_state['cv_builder'].fine_tune_sft(images, texts)
|
572 |
-
st.session_state['cv_builder'].save_model(new_config.model_path)
|
573 |
-
status.update(label="Stylization tuned! 🎉 (Pixel art unleashed!)", state="complete")
|
574 |
-
zip_path = f"{new_config.model_path}.zip"
|
575 |
-
zip_files([new_config.model_path], zip_path)
|
576 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download Stylized Titan 📦"), unsafe_allow_html=True)
|
577 |
-
stylize_md = f"stylize_dataset_{int(time.time())}.md"
|
578 |
-
with open(stylize_md, "w") as f:
|
579 |
-
f.write("# Stylization Dataset\n\n")
|
580 |
-
for _, row in stylize_edited.iterrows():
|
581 |
-
f.write(f"- `{row['image']}`: {row['text']}\n")
|
582 |
-
st.markdown(get_download_link(stylize_md, "text/markdown", "Download Stylization MD 📝"), unsafe_allow_html=True)
|
583 |
-
|
584 |
-
st.subheader("Use Case 3: Multi-Angle Snapshots 🌐")
|
585 |
-
multiangle_data = [{"image": img, "text": f"View from {os.path.basename(img).split('-')[4]}"} for img in captured_images[:min(len(captured_images), 10)]]
|
586 |
-
multiangle_edited = st.data_editor(pd.DataFrame(multiangle_data), num_rows="dynamic", help="Craft multi-angle pairs! 🌐")
|
587 |
-
if st.button("Fine-Tune Multi-Angle 🔄"):
|
588 |
-
images = [Image.open(row["image"]) for _, row in multiangle_edited.iterrows()]
|
589 |
-
texts = [row["text"] for _, row in multiangle_edited.iterrows()]
|
590 |
-
new_model_name = f"{st.session_state['cv_builder'].config.name}-multiangle-{int(time.time())}"
|
591 |
-
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small")
|
592 |
-
st.session_state['cv_builder'].config = new_config
|
593 |
-
with st.status("Fine-tuning for multi-angle... ⏳ (Spinning pixels!)", expanded=True) as status:
|
594 |
-
st.session_state['cv_builder'].fine_tune_sft(images, texts)
|
595 |
-
st.session_state['cv_builder'].save_model(new_config.model_path)
|
596 |
-
status.update(label="Multi-angle tuned! 🎉 (Pixel views unleashed!)", state="complete")
|
597 |
zip_path = f"{new_config.model_path}.zip"
|
598 |
-
|
599 |
-
st.markdown(get_download_link(zip_path, "application/zip", "Download
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
607 |
|
608 |
with tab4:
|
609 |
-
st.header("Test Titan
|
610 |
-
if not st.session_state
|
611 |
-
st.warning("Please build or load a
|
612 |
else:
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
619 |
|
620 |
with tab5:
|
621 |
-
st.header("Agentic RAG Party
|
622 |
-
|
623 |
-
|
624 |
-
st.warning("Please build or load a CV Titan first! ⚠️ (No artist, no party!)")
|
625 |
else:
|
626 |
-
if st.
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
with st.spinner("Crafting superhero party visuals... ⏳ (Pixels assemble!)"):
|
644 |
-
try:
|
645 |
-
plan_df = agent.plan_party()
|
646 |
-
st.dataframe(plan_df)
|
647 |
-
for _, row in plan_df.iterrows():
|
648 |
-
image = agent.generate(row["Image Idea"])
|
649 |
-
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}", use_container_width=True)
|
650 |
-
except Exception as e:
|
651 |
-
st.error(f"Party crashed: {str(e)} 💥 (Pixel oopsie!)")
|
652 |
-
logger.error(f"RAG demo failed: {str(e)}")
|
653 |
-
|
654 |
st.sidebar.subheader("Action Logs 📜")
|
655 |
log_container = st.sidebar.empty()
|
656 |
with log_container:
|
657 |
for record in log_records:
|
658 |
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
659 |
|
|
|
660 |
update_gallery()
|
|
|
5 |
import streamlit as st
|
6 |
import pandas as pd
|
7 |
import torch
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
from torch.utils.data import Dataset, DataLoader
|
10 |
import csv
|
11 |
import time
|
12 |
from dataclasses import dataclass
|
13 |
+
from typing import Optional, Tuple
|
14 |
import zipfile
|
15 |
import math
|
16 |
from PIL import Image
|
17 |
import random
|
18 |
import logging
|
19 |
import numpy as np
|
20 |
+
from diffusers import StableDiffusionPipeline, DDPMPipeline, EulerAncestralDiscreteScheduler
|
|
|
21 |
|
22 |
+
# Logging setup with a custom buffer
|
23 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
24 |
logger = logging.getLogger(__name__)
|
25 |
log_records = []
|
|
|
30 |
|
31 |
logger.addHandler(LogCaptureHandler())
|
32 |
|
33 |
+
# Page Configuration
|
34 |
st.set_page_config(
|
35 |
page_title="SFT Tiny Titans 🚀",
|
36 |
page_icon="🤖",
|
|
|
39 |
menu_items={
|
40 |
'Get Help': 'https://huggingface.co/awacke1',
|
41 |
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
|
42 |
+
'About': "Tiny Titans: Small models, big dreams, and a sprinkle of chaos! 🌌"
|
43 |
}
|
44 |
)
|
45 |
|
46 |
+
# Initialize st.session_state
|
47 |
if 'captured_images' not in st.session_state:
|
48 |
st.session_state['captured_images'] = []
|
49 |
+
if 'builder' not in st.session_state:
|
50 |
+
st.session_state['builder'] = None
|
51 |
+
if 'model_loaded' not in st.session_state:
|
52 |
+
st.session_state['model_loaded'] = False
|
53 |
+
|
54 |
+
# Model Configuration Classes
|
55 |
+
@dataclass
|
56 |
+
class ModelConfig:
|
57 |
+
name: str
|
58 |
+
base_model: str
|
59 |
+
size: str
|
60 |
+
domain: Optional[str] = None
|
61 |
+
model_type: str = "causal_lm"
|
62 |
+
@property
|
63 |
+
def model_path(self):
|
64 |
+
return f"models/{self.name}"
|
65 |
|
66 |
@dataclass
|
67 |
class DiffusionConfig:
|
|
|
68 |
name: str
|
69 |
base_model: str
|
70 |
size: str
|
|
|
72 |
def model_path(self):
|
73 |
return f"diffusion_models/{self.name}"
|
74 |
|
75 |
+
# Datasets
|
76 |
+
class SFTDataset(Dataset):
|
77 |
+
def __init__(self, data, tokenizer, max_length=128):
|
78 |
+
self.data = data
|
79 |
+
self.tokenizer = tokenizer
|
80 |
+
self.max_length = max_length
|
81 |
+
def __len__(self):
|
82 |
+
return len(self.data)
|
83 |
+
def __getitem__(self, idx):
|
84 |
+
prompt = self.data[idx]["prompt"]
|
85 |
+
response = self.data[idx]["response"]
|
86 |
+
full_text = f"{prompt} {response}"
|
87 |
+
full_encoding = self.tokenizer(full_text, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt")
|
88 |
+
prompt_encoding = self.tokenizer(prompt, max_length=self.max_length, padding=False, truncation=True, return_tensors="pt")
|
89 |
+
input_ids = full_encoding["input_ids"].squeeze()
|
90 |
+
attention_mask = full_encoding["attention_mask"].squeeze()
|
91 |
+
labels = input_ids.clone()
|
92 |
+
prompt_len = prompt_encoding["input_ids"].shape[1]
|
93 |
+
if prompt_len < self.max_length:
|
94 |
+
labels[:prompt_len] = -100
|
95 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
96 |
+
|
97 |
class DiffusionDataset(Dataset):
|
|
|
98 |
def __init__(self, images, texts):
|
99 |
self.images = images
|
100 |
self.texts = texts
|
|
|
103 |
def __getitem__(self, idx):
|
104 |
return {"image": self.images[idx], "text": self.texts[idx]}
|
105 |
|
106 |
+
# Model Builders
|
107 |
+
class ModelBuilder:
|
108 |
def __init__(self):
|
109 |
self.config = None
|
110 |
+
self.model = None
|
111 |
+
self.tokenizer = None
|
112 |
+
self.sft_data = None
|
113 |
+
self.jokes = ["Why did the AI go to therapy? Too many layers to unpack! 😂", "Training complete! Time for a binary coffee break. ☕"]
|
114 |
+
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
|
115 |
+
with st.spinner(f"Loading {model_path}... ⏳"):
|
116 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_path)
|
117 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
118 |
+
if self.tokenizer.pad_token is None:
|
119 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
120 |
+
if config:
|
121 |
+
self.config = config
|
122 |
+
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
|
123 |
+
st.success(f"Model loaded! 🎉 {random.choice(self.jokes)}")
|
|
|
124 |
return self
|
125 |
+
def fine_tune_sft(self, csv_path: str, epochs: int = 3, batch_size: int = 4):
|
126 |
+
self.sft_data = []
|
127 |
+
with open(csv_path, "r") as f:
|
128 |
+
reader = csv.DictReader(f)
|
129 |
+
for row in reader:
|
130 |
+
self.sft_data.append({"prompt": row["prompt"], "response": row["response"]})
|
131 |
+
dataset = SFTDataset(self.sft_data, self.tokenizer)
|
132 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
133 |
+
optimizer = torch.optim.AdamW(self.model.parameters(), lr=2e-5)
|
134 |
+
self.model.train()
|
135 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
136 |
+
self.model.to(device)
|
137 |
+
for epoch in range(epochs):
|
138 |
+
with st.spinner(f"Training epoch {epoch + 1}/{epochs}... ⚙️"):
|
139 |
+
total_loss = 0
|
140 |
+
for batch in dataloader:
|
141 |
+
optimizer.zero_grad()
|
142 |
+
input_ids = batch["input_ids"].to(device)
|
143 |
+
attention_mask = batch["attention_mask"].to(device)
|
144 |
+
labels = batch["labels"].to(device)
|
145 |
+
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
|
146 |
+
loss = outputs.loss
|
147 |
+
loss.backward()
|
148 |
+
optimizer.step()
|
149 |
+
total_loss += loss.item()
|
150 |
+
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
151 |
+
st.success(f"SFT Fine-tuning completed! 🎉 {random.choice(self.jokes)}")
|
|
|
|
|
|
|
|
|
152 |
return self
|
153 |
def save_model(self, path: str):
|
154 |
+
with st.spinner("Saving model... 💾"):
|
155 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
156 |
+
self.model.save_pretrained(path)
|
157 |
+
self.tokenizer.save_pretrained(path)
|
158 |
+
st.success(f"Model saved at {path}! ✅")
|
159 |
+
def evaluate(self, prompt: str, status_container=None):
|
160 |
+
self.model.eval()
|
161 |
+
if status_container:
|
162 |
+
status_container.write("Preparing to evaluate... 🧠")
|
163 |
try:
|
164 |
+
with torch.no_grad():
|
165 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
|
166 |
+
outputs = self.model.generate(**inputs, max_new_tokens=50, do_sample=True, top_p=0.95, temperature=0.7)
|
167 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
except Exception as e:
|
169 |
+
if status_container:
|
170 |
+
status_container.error(f"Oops! Something broke: {str(e)} 💥")
|
171 |
+
return f"Error: {str(e)}"
|
172 |
|
173 |
+
class DiffusionBuilder:
|
|
|
174 |
def __init__(self):
|
175 |
self.config = None
|
176 |
self.pipeline = None
|
177 |
+
self.model_type = None
|
178 |
+
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None, model_type: str = "StableDiffusion"):
|
179 |
+
with st.spinner(f"Loading diffusion model {model_path}... ⏳"):
|
180 |
+
if model_type == "StableDiffusion":
|
181 |
+
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
|
182 |
+
elif model_type == "DDPM":
|
183 |
+
self.pipeline = DDPMPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
|
184 |
+
self.pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipeline.scheduler.config)
|
185 |
+
if config:
|
186 |
+
self.config = config
|
187 |
+
self.model_type = model_type
|
188 |
+
st.success(f"Diffusion model loaded! 🎨")
|
|
|
|
|
|
|
189 |
return self
|
190 |
def fine_tune_sft(self, images, texts, epochs=3):
|
191 |
+
dataset = DiffusionDataset(images, texts)
|
192 |
+
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
193 |
+
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
|
194 |
+
self.pipeline.unet.train()
|
195 |
+
for epoch in range(epochs):
|
196 |
+
with st.spinner(f"Training diffusion epoch {epoch + 1}/{epochs}... ⚙️"):
|
197 |
+
total_loss = 0
|
198 |
+
for batch in dataloader:
|
199 |
+
optimizer.zero_grad()
|
200 |
+
image = batch["image"][0].to(self.pipeline.device)
|
201 |
+
text = batch["text"][0]
|
202 |
+
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(self.pipeline.device)).latent_dist.sample()
|
203 |
+
noise = torch.randn_like(latents)
|
204 |
+
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
|
205 |
+
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
|
206 |
+
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(self.pipeline.device))[0]
|
207 |
+
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
|
208 |
+
loss = torch.nn.functional.mse_loss(pred_noise, noise)
|
209 |
+
loss.backward()
|
210 |
+
optimizer.step()
|
211 |
+
total_loss += loss.item()
|
212 |
+
st.write(f"Epoch {epoch + 1} completed. Average loss: {total_loss / len(dataloader):.4f}")
|
213 |
+
st.success("Diffusion SFT Fine-tuning completed! 🎨")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
return self
|
215 |
def save_model(self, path: str):
|
216 |
+
with st.spinner("Saving diffusion model... 💾"):
|
217 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
218 |
+
self.pipeline.save_pretrained(path)
|
219 |
+
st.success(f"Diffusion model saved at {path}! ✅")
|
220 |
+
def generate(self, prompt: str, image=None):
|
221 |
+
if self.model_type == "StableDiffusion":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
223 |
+
elif self.model_type == "DDPM":
|
224 |
+
return self.pipeline(num_inference_steps=50).images[0]
|
|
|
|
|
225 |
|
226 |
+
# Utility Functions
|
227 |
def generate_filename(sequence, ext="png"):
|
|
|
228 |
from datetime import datetime
|
229 |
import pytz
|
230 |
central = pytz.timezone('US/Central')
|
231 |
+
timestamp = datetime.now(central).strftime("%d%m%Y%H%M%S%p")
|
232 |
+
return f"{sequence}{timestamp}.{ext}"
|
233 |
|
234 |
def get_download_link(file_path, mime_type="text/plain", label="Download"):
|
235 |
+
with open(file_path, 'rb') as f:
|
236 |
+
data = f.read()
|
237 |
+
b64 = base64.b64encode(data).decode()
|
238 |
+
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'
|
239 |
+
|
240 |
+
def zip_directory(directory_path, zip_path):
|
241 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
242 |
+
for root, _, files in os.walk(directory_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
for file in files:
|
244 |
+
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
|
245 |
+
|
246 |
+
def get_model_files(model_type="causal_lm"):
|
247 |
+
path = "models/*" if model_type == "causal_lm" else "diffusion_models/*"
|
248 |
+
return [d for d in glob.glob(path) if os.path.isdir(d)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
def get_gallery_files(file_types):
|
251 |
+
return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])
|
|
|
252 |
|
253 |
def update_gallery():
|
|
|
254 |
media_files = get_gallery_files(["png"])
|
255 |
if media_files:
|
256 |
cols = st.sidebar.columns(2)
|
257 |
for idx, file in enumerate(media_files[:gallery_size * 2]):
|
258 |
with cols[idx % 2]:
|
259 |
st.image(Image.open(file), caption=file, use_container_width=True)
|
260 |
+
st.markdown(get_download_link(file, "image/png", "Download Image"), unsafe_allow_html=True)
|
261 |
+
|
262 |
+
# Mock Search Tool for RAG
|
263 |
+
def mock_search(query: str) -> str:
|
264 |
+
if "superhero" in query.lower():
|
265 |
+
return "Latest trends: Gold-plated Batman statues, VR superhero battles."
|
266 |
+
return "No relevant results found."
|
267 |
+
|
268 |
+
class PartyPlannerAgent:
|
269 |
+
def __init__(self, model, tokenizer):
|
270 |
+
self.model = model
|
271 |
+
self.tokenizer = tokenizer
|
272 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
273 |
+
self.model.to(self.device)
|
274 |
+
def generate(self, prompt: str) -> str:
|
275 |
+
self.model.eval()
|
276 |
+
with torch.no_grad():
|
277 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.device)
|
278 |
+
outputs = self.model.generate(**inputs, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7)
|
279 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
280 |
+
def plan_party(self, task: str) -> pd.DataFrame:
|
281 |
+
search_result = mock_search("superhero party trends")
|
282 |
+
prompt = f"Given this context: '{search_result}'\n{task}"
|
283 |
+
plan_text = self.generate(prompt)
|
284 |
+
locations = {"Wayne Manor": (42.3601, -71.0589), "New York": (40.7128, -74.0060)}
|
285 |
+
wayne_coords = locations["Wayne Manor"]
|
286 |
+
travel_times = {loc: calculate_cargo_travel_time(coords, wayne_coords) for loc, coords in locations.items() if loc != "Wayne Manor"}
|
287 |
+
data = [
|
288 |
+
{"Location": "New York", "Travel Time (hrs)": travel_times["New York"], "Luxury Idea": "Gold-plated Batman statues"},
|
289 |
+
{"Location": "Wayne Manor", "Travel Time (hrs)": 0.0, "Luxury Idea": "VR superhero battles"}
|
290 |
+
]
|
291 |
+
return pd.DataFrame(data)
|
292 |
+
|
293 |
+
class CVPartyPlannerAgent:
|
294 |
+
def __init__(self, pipeline):
|
295 |
+
self.pipeline = pipeline
|
296 |
+
def generate(self, prompt: str) -> Image.Image:
|
297 |
+
return self.pipeline(prompt, num_inference_steps=50).images[0]
|
298 |
+
def plan_party(self, task: str) -> pd.DataFrame:
|
299 |
+
search_result = mock_search("superhero party trends")
|
300 |
+
prompt = f"Given this context: '{search_result}'\n{task}"
|
301 |
+
data = [
|
302 |
+
{"Theme": "Batman", "Image Idea": "Gold-plated Batman statue"},
|
303 |
+
{"Theme": "Avengers", "Image Idea": "VR superhero battle scene"}
|
304 |
+
]
|
305 |
+
return pd.DataFrame(data)
|
306 |
+
|
307 |
+
def calculate_cargo_travel_time(origin_coords: Tuple[float, float], destination_coords: Tuple[float, float], cruising_speed_kmh: float = 750.0) -> float:
|
308 |
+
def to_radians(degrees: float) -> float:
|
309 |
+
return degrees * (math.pi / 180)
|
310 |
+
lat1, lon1 = map(to_radians, origin_coords)
|
311 |
+
lat2, lon2 = map(to_radians, destination_coords)
|
312 |
+
EARTH_RADIUS_KM = 6371.0
|
313 |
+
dlon = lon2 - lon1
|
314 |
+
dlat = lat2 - lat1
|
315 |
+
a = (math.sin(dlat / 2) ** 2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2)
|
316 |
+
c = 2 * math.asin(math.sqrt(a))
|
317 |
+
distance = EARTH_RADIUS_KM * c
|
318 |
+
actual_distance = distance * 1.1
|
319 |
+
flight_time = (actual_distance / cruising_speed_kmh) + 1.0
|
320 |
+
return round(flight_time, 2)
|
321 |
+
|
322 |
+
# Main App
|
323 |
+
st.title("SFT Tiny Titans 🚀 (Small but Mighty!)")
|
324 |
+
|
325 |
+
# Sidebar Galleries
|
326 |
st.sidebar.header("Media Gallery 🎨")
|
327 |
+
gallery_size = st.sidebar.slider("Gallery Size", 1, 10, 4)
|
328 |
update_gallery()
|
329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
st.sidebar.subheader("Model Management 🗂️")
|
331 |
+
model_type = st.sidebar.selectbox("Model Type", ["Causal LM", "Diffusion"])
|
332 |
+
model_dirs = get_model_files("causal_lm" if model_type == "Causal LM" else "diffusion")
|
333 |
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
|
|
|
334 |
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
|
335 |
+
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
336 |
+
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=os.path.basename(selected_model), base_model="unknown", size="small")
|
337 |
+
builder.load_model(selected_model, config)
|
338 |
+
st.session_state['builder'] = builder
|
339 |
+
st.session_state['model_loaded'] = True
|
340 |
+
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
+
# Tabs (Reordered: Camera Snap first)
|
343 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Camera Snap 📷", "Fine-Tune Titan 🔧", "Build Titan 🌱", "Test Titan 🧪", "Agentic RAG Party 🌐"])
|
|
|
|
|
|
|
344 |
|
345 |
with tab1:
|
346 |
+
st.header("Camera Snap 📷 (Dual Capture!)")
|
347 |
+
slice_count = st.number_input("Image Slice Count", min_value=1, max_value=20, value=10)
|
348 |
+
video_length = st.number_input("Video Length (seconds)", min_value=1, max_value=30, value=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
cols = st.columns(2)
|
350 |
with cols[0]:
|
351 |
+
st.subheader("Camera 0")
|
352 |
+
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
if cam0_img:
|
354 |
+
filename = generate_filename(0)
|
355 |
with open(filename, "wb") as f:
|
356 |
f.write(cam0_img.getvalue())
|
357 |
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
358 |
logger.info(f"Saved snapshot from Camera 0: {filename}")
|
359 |
st.session_state['captured_images'].append(filename)
|
360 |
update_gallery()
|
361 |
+
if st.button(f"Capture {slice_count} Frames - Cam 0 📸"):
|
362 |
+
st.session_state['cam0_frames'] = []
|
363 |
+
for i in range(slice_count):
|
364 |
+
img = st.camera_input(f"Frame {i} - Cam 0", key=f"cam0_frame_{i}_{time.time()}")
|
365 |
+
if img:
|
366 |
+
filename = generate_filename(f"0_{i}")
|
367 |
+
with open(filename, "wb") as f:
|
368 |
+
f.write(img.getvalue())
|
369 |
+
st.session_state['cam0_frames'].append(filename)
|
370 |
+
logger.info(f"Saved frame {i} from Camera 0: {filename}")
|
371 |
+
time.sleep(1.0 / slice_count)
|
372 |
+
st.session_state['captured_images'].extend(st.session_state['cam0_frames'])
|
373 |
+
update_gallery()
|
374 |
+
for frame in st.session_state['cam0_frames']:
|
375 |
+
st.image(Image.open(frame), caption=frame, use_container_width=True)
|
376 |
with cols[1]:
|
377 |
+
st.subheader("Camera 1")
|
378 |
+
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
if cam1_img:
|
380 |
+
filename = generate_filename(1)
|
381 |
with open(filename, "wb") as f:
|
382 |
f.write(cam1_img.getvalue())
|
383 |
st.image(Image.open(filename), caption=filename, use_container_width=True)
|
384 |
logger.info(f"Saved snapshot from Camera 1: {filename}")
|
385 |
st.session_state['captured_images'].append(filename)
|
386 |
update_gallery()
|
387 |
+
if st.button(f"Capture {slice_count} Frames - Cam 1 📸"):
|
388 |
+
st.session_state['cam1_frames'] = []
|
389 |
+
for i in range(slice_count):
|
390 |
+
img = st.camera_input(f"Frame {i} - Cam 1", key=f"cam1_frame_{i}_{time.time()}")
|
391 |
+
if img:
|
392 |
+
filename = generate_filename(f"1_{i}")
|
393 |
+
with open(filename, "wb") as f:
|
394 |
+
f.write(img.getvalue())
|
395 |
+
st.session_state['cam1_frames'].append(filename)
|
396 |
+
logger.info(f"Saved frame {i} from Camera 1: {filename}")
|
397 |
+
time.sleep(1.0 / slice_count)
|
398 |
+
st.session_state['captured_images'].extend(st.session_state['cam1_frames'])
|
399 |
+
update_gallery()
|
400 |
+
for frame in st.session_state['cam1_frames']:
|
401 |
+
st.image(Image.open(frame), caption=frame, use_container_width=True)
|
402 |
|
403 |
+
with tab2:
|
404 |
+
st.header("Fine-Tune Titan 🔧")
|
405 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
406 |
+
st.warning("Please build or load a Titan first! ⚠️")
|
407 |
else:
|
408 |
+
if isinstance(st.session_state['builder'], ModelBuilder):
|
409 |
+
uploaded_csv = st.file_uploader("Upload CSV for SFT", type="csv")
|
410 |
+
if uploaded_csv and st.button("Fine-Tune with Uploaded CSV 🔄"):
|
411 |
+
csv_path = f"uploaded_sft_data_{int(time.time())}.csv"
|
412 |
+
with open(csv_path, "wb") as f:
|
413 |
+
f.write(uploaded_csv.read())
|
414 |
+
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
415 |
+
new_config = ModelConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
|
416 |
+
st.session_state['builder'].config = new_config
|
417 |
+
st.session_state['builder'].fine_tune_sft(csv_path)
|
418 |
+
st.session_state['builder'].save_model(new_config.model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
zip_path = f"{new_config.model_path}.zip"
|
420 |
+
zip_directory(new_config.model_path, zip_path)
|
421 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Titan"), unsafe_allow_html=True)
|
422 |
+
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
423 |
+
captured_images = get_gallery_files(["png"])
|
424 |
+
if len(captured_images) >= 2:
|
425 |
+
demo_data = [{"image": img, "text": f"Superhero {os.path.basename(img).split('.')[0]}"} for img in captured_images[:min(len(captured_images), slice_count)]]
|
426 |
+
edited_data = st.data_editor(pd.DataFrame(demo_data), num_rows="dynamic")
|
427 |
+
if st.button("Fine-Tune with Dataset 🔄"):
|
428 |
+
images = [Image.open(row["image"]) for _, row in edited_data.iterrows()]
|
429 |
+
texts = [row["text"] for _, row in edited_data.iterrows()]
|
430 |
+
new_model_name = f"{st.session_state['builder'].config.name}-sft-{int(time.time())}"
|
431 |
+
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['builder'].config.base_model, size="small")
|
432 |
+
st.session_state['builder'].config = new_config
|
433 |
+
st.session_state['builder'].fine_tune_sft(images, texts)
|
434 |
+
st.session_state['builder'].save_model(new_config.model_path)
|
435 |
+
zip_path = f"{new_config.model_path}.zip"
|
436 |
+
zip_directory(new_config.model_path, zip_path)
|
437 |
+
st.markdown(get_download_link(zip_path, "application/zip", "Download Fine-Tuned Diffusion Model"), unsafe_allow_html=True)
|
438 |
+
csv_path = f"sft_dataset_{int(time.time())}.csv"
|
439 |
+
with open(csv_path, "w", newline="") as f:
|
440 |
+
writer = csv.writer(f)
|
441 |
+
writer.writerow(["image", "text"])
|
442 |
+
for _, row in edited_data.iterrows():
|
443 |
+
writer.writerow([row["image"], row["text"]])
|
444 |
+
st.markdown(get_download_link(csv_path, "text/csv", "Download SFT Dataset CSV"), unsafe_allow_html=True)
|
445 |
+
|
446 |
+
with tab3:
|
447 |
+
st.header("Build Titan 🌱")
|
448 |
+
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
|
449 |
+
base_model_options = {
|
450 |
+
"Causal LM": ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"],
|
451 |
+
"Diffusion": [
|
452 |
+
"OFA-Sys/small-stable-diffusion-v0 (LDM/Conditional)",
|
453 |
+
"google/ddpm-ema-celebahq-256 (DDPM/SDE/Autoregressive Proxy)"
|
454 |
+
]
|
455 |
+
}
|
456 |
+
base_model = st.selectbox("Select Tiny Model", base_model_options[model_type])
|
457 |
+
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
|
458 |
+
if st.button("Download Model ⬇️"):
|
459 |
+
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model.split(" ")[0], size="small")
|
460 |
+
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
|
461 |
+
model_type_for_diffusion = "StableDiffusion" if "small-stable-diffusion" in base_model else "DDPM"
|
462 |
+
builder.load_model(base_model.split(" ")[0], config, model_type_for_diffusion)
|
463 |
+
builder.save_model(config.model_path)
|
464 |
+
st.session_state['builder'] = builder
|
465 |
+
st.session_state['model_loaded'] = True
|
466 |
+
st.rerun()
|
467 |
|
468 |
with tab4:
|
469 |
+
st.header("Test Titan 🧪")
|
470 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
471 |
+
st.warning("Please build or load a Titan first! ⚠️")
|
472 |
else:
|
473 |
+
captured_images = get_gallery_files(["png"])
|
474 |
+
if captured_images:
|
475 |
+
selected_image = st.selectbox("Select Image", captured_images)
|
476 |
+
prompt = st.text_area("Enter Text Prompt", f"Superhero {os.path.basename(selected_image).split('.')[0]}")
|
477 |
+
pipeline_options = ["Stable Diffusion (LDM/Conditional)", "DDPM (DDPM/SDE/Autoregressive Proxy)"] if isinstance(st.session_state['builder'], DiffusionBuilder) else ["Causal LM"]
|
478 |
+
selected_pipeline = st.selectbox("Select Pipeline", pipeline_options)
|
479 |
+
if st.button("Run Test 🚀"):
|
480 |
+
if isinstance(st.session_state['builder'], ModelBuilder):
|
481 |
+
result = st.session_state['builder'].evaluate(prompt)
|
482 |
+
st.write(f"**Generated Response**: {result}")
|
483 |
+
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
484 |
+
if selected_pipeline == "Stable Diffusion (LDM/Conditional)":
|
485 |
+
image = st.session_state['builder'].generate(prompt)
|
486 |
+
else: # DDPM
|
487 |
+
image = st.session_state['builder'].generate(prompt)
|
488 |
+
st.image(image, caption=f"Generated from {selected_pipeline}")
|
489 |
|
490 |
with tab5:
|
491 |
+
st.header("Agentic RAG Party 🌐")
|
492 |
+
if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
|
493 |
+
st.warning("Please build or load a Titan first! ⚠️")
|
|
|
494 |
else:
|
495 |
+
if isinstance(st.session_state['builder'], ModelBuilder):
|
496 |
+
if st.button("Run NLP RAG Demo 🎉"):
|
497 |
+
agent = PartyPlannerAgent(st.session_state['builder'].model, st.session_state['builder'].tokenizer)
|
498 |
+
task = "Plan a luxury superhero-themed party at Wayne Manor."
|
499 |
+
plan_df = agent.plan_party(task)
|
500 |
+
st.dataframe(plan_df)
|
501 |
+
elif isinstance(st.session_state['builder'], DiffusionBuilder):
|
502 |
+
if st.button("Run CV RAG Demo 🎉"):
|
503 |
+
agent = CVPartyPlannerAgent(st.session_state['builder'].pipeline)
|
504 |
+
task = "Generate images for a luxury superhero-themed party."
|
505 |
+
plan_df = agent.plan_party(task)
|
506 |
+
st.dataframe(plan_df)
|
507 |
+
for _, row in plan_df.iterrows():
|
508 |
+
image = agent.generate(row["Image Idea"])
|
509 |
+
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}")
|
510 |
+
|
511 |
+
# Display Logs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
512 |
st.sidebar.subheader("Action Logs 📜")
|
513 |
log_container = st.sidebar.empty()
|
514 |
with log_container:
|
515 |
for record in log_records:
|
516 |
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
|
517 |
|
518 |
+
# Initial Gallery Update
|
519 |
update_gallery()
|