File size: 36,492 Bytes
6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 cf22379 be5a0c1 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 cf22379 c252fa6 cf22379 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 cf22379 de093f2 c252fa6 de093f2 c252fa6 de093f2 c252fa6 cf22379 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 6893dd3 c252fa6 de093f2 c252fa6 de093f2 c252fa6 de093f2 c252fa6 de093f2 c252fa6 de093f2 c252fa6 de093f2 c252fa6 de093f2 c252fa6 cf22379 c252fa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
import aiofiles
import asyncio
import base64
import cv2
import fitz
import glob
import io
import json
import logging
import math
import mistune
import os
import pandas as pd
import pytz
import random
import re
import requests
import shutil
import streamlit as st
import streamlit.components.v1 as components
import sys
import textract
import time
import torch
import zipfile
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from contextlib import redirect_stdout
from dataclasses import dataclass
from datetime import datetime
from diffusers import StableDiffusionPipeline
from dotenv import load_dotenv
from gradio_client import Client, handle_file
from huggingface_hub import InferenceClient
from io import BytesIO
from moviepy import VideoFileClip
from openai import OpenAI
from PIL import Image
from PyPDF2 import PdfReader
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from typing import Optional
from urllib.parse import quote
from xml.etree import ElementTree as ET
# OpenAI client initialization
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
# Logging setup
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
# Streamlit configuration
st.set_page_config(
page_title="AI Multimodal Titan π",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
'About': "AI Multimodal Titan: PDFs, OCR, Image Gen, Audio/Video, Code Execution, and More! π"
}
)
# Session state initialization
for key in ['history', 'messages', 'processing', 'asset_checkboxes', 'downloaded_pdfs', 'unique_counter', 'search_queries']:
st.session_state.setdefault(key, [] if key in ['history', 'messages', 'search_queries'] else {} if key in ['asset_checkboxes', 'downloaded_pdfs', 'processing'] else 0 if key == 'unique_counter' else None)
st.session_state.setdefault('builder', None)
st.session_state.setdefault('model_loaded', False)
st.session_state.setdefault('selected_model_type', "Causal LM")
st.session_state.setdefault('selected_model', "None")
st.session_state.setdefault('gallery_size', 2)
st.session_state.setdefault('asset_gallery_container', st.sidebar.empty())
st.session_state.setdefault('cam0_file', None)
st.session_state.setdefault('cam1_file', None)
st.session_state.setdefault('openai_model', "gpt-4o-2024-05-13")
# Model configurations
@dataclass
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
@property
def model_path(self):
return f"diffusion_models/{self.name}"
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.jokes = [
"Why did the AI go to therapy? Too many layers to unpack! π",
"Training complete! Time for a binary coffee break. β",
"I told my neural network a joke; it couldn't stop dropping bits! π€",
"I asked the AI for a pun, and it said, 'I'm punning on parallel processing!' π",
"Debugging my code is like a stand-up routineβalways a series of exceptions! π"
]
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
with st.spinner(f"Loading {model_path}... β³"):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
self.model.to("cuda" if torch.cuda.is_available() else "cpu")
st.success(f"Model loaded! π {random.choice(self.jokes)}")
return self
def save_model(self, path: str):
with st.spinner("Saving model... πΎ"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success(f"Model saved at {path}! β
")
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
with st.spinner(f"Loading diffusion model {model_path}... β³"):
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
if config:
self.config = config
st.success("Diffusion model loaded! π¨")
return self
def save_model(self, path: str):
with st.spinner("Saving diffusion model... πΎ"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
st.success(f"Diffusion model saved at {path}! β
")
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=20).images[0]
# Utility functions
def generate_filename(sequence, ext="png", prompt=None):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
if prompt:
safe_prompt = re.sub(r'[<>:"/\\|?*\n]', '_', prompt)[:240]
return f"{safe_date_time}_{safe_prompt}.{ext}"
return f"{sequence}_{time.strftime('%d%m%Y%H%M%S')}.{ext}"
def pdf_url_to_filename(url):
return re.sub(r'[<>:"/\\|?*]', '_', url) + ".pdf"
def get_download_link(file_path, mime_type="application/pdf", label="Download"):
with open(file_path, "rb") as f:
data = base64.b64encode(f.read()).decode()
return f'<a href="data:{mime_type};base64,{data}" download="{os.path.basename(file_path)}">{label}</a>'
def zip_directory(directory_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(directory_path):
for file in files:
zipf.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
def get_model_files(model_type="causal_lm"):
return [d for d in glob.glob("models/*" if model_type == "causal_lm" else "diffusion_models/*") if os.path.isdir(d)] or ["None"]
def get_gallery_files(file_types=["png", "pdf", "md", "wav", "mp4"]):
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")}))
def get_pdf_files():
return sorted(glob.glob("*.pdf"))
def download_pdf(url, output_path):
try:
response = requests.get(url, stream=True, timeout=10)
if response.status_code == 200:
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return True
except requests.RequestException as e:
logger.error(f"Failed to download {url}: {e}")
return False
# Processing functions
async def process_pdf_snapshot(pdf_path, mode="single"):
start_time = time.time()
status = st.empty()
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
try:
doc = fitz.open(pdf_path)
output_files = []
if mode == "single":
page = doc[0]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename("single", "png")
pix.save(output_file)
output_files.append(output_file)
elif mode == "twopage":
if len(doc) >= 2:
pix1 = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
pix2 = doc[1].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
img1 = Image.frombytes("RGB", [pix1.width, pix1.height], pix1.samples)
img2 = Image.frombytes("RGB", [pix2.width, pix2.height], pix2.samples)
combined_img = Image.new("RGB", (pix1.width + pix2.width, max(pix1.height, pix2.height)))
combined_img.paste(img1, (0, 0))
combined_img.paste(img2, (pix1.width, 0))
output_file = generate_filename("twopage", "png")
combined_img.save(output_file)
output_files.append(output_file)
else:
page = doc[0]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename("single", "png")
pix.save(output_file)
output_files.append(output_file)
elif mode == "allpages":
for i in range(len(doc)):
page = doc[i]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename(f"page_{i}", "png")
pix.save(output_file)
output_files.append(output_file)
doc.close()
elapsed = int(time.time() - start_time)
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
return output_files
except Exception as e:
status.error(f"Failed to process PDF: {str(e)}")
return []
async def process_ocr(image, output_file):
start_time = time.time()
status = st.empty()
status.text("Processing GOT-OCR2_0... (0s)")
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
temp_file = generate_filename("temp", "png")
image.save(temp_file)
result = model.chat(tokenizer, temp_file, ocr_type='ocr')
os.remove(temp_file)
elapsed = int(time.time() - start_time)
status.text(f"GOT-OCR2_0 completed in {elapsed}s!")
async with aiofiles.open(output_file, "w") as f:
await f.write(result)
return result
async def process_image_gen(prompt, output_file):
start_time = time.time()
status = st.empty()
status.text("Processing Image Gen... (0s)")
pipeline = (st.session_state['builder'].pipeline if st.session_state.get('builder') and isinstance(st.session_state['builder'], DiffusionBuilder) and st.session_state['builder'].pipeline else StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu"))
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
elapsed = int(time.time() - start_time)
status.text(f"Image Gen completed in {elapsed}s!")
gen_image.save(output_file)
return gen_image
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
messages = [{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}]}]
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
return response.choices[0].message.content
except Exception as e:
return f"Error processing image with GPT: {str(e)}"
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}]
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
return response.choices[0].message.content
except Exception as e:
return f"Error processing text with GPT: {str(e)}"
def process_text(text_input):
if text_input:
st.session_state.messages.append({"role": "user", "content": text_input})
with st.chat_message("user"):
st.markdown(text_input)
with st.chat_message("assistant"):
completion = client.chat.completions.create(model=st.session_state["openai_model"], messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False)
return_text = completion.choices[0].message.content
st.write("Assistant: " + return_text)
filename = generate_filename(text_input, "md")
with open(filename, "w", encoding="utf-8") as f:
f.write(text_input + "\n\n" + return_text)
st.session_state.messages.append({"role": "assistant", "content": return_text})
return return_text
def process_audio(audio_input, text_input=''):
if isinstance(audio_input, str):
with open(audio_input, "rb") as file:
audio_input = file.read()
transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input)
st.session_state.messages.append({"role": "user", "content": transcription.text})
with st.chat_message("assistant"):
st.markdown(transcription.text)
SpeechSynthesis(transcription.text)
filename = generate_filename(transcription.text, "wav")
create_audio_file(filename, audio_input, True)
filename = generate_filename(transcription.text, "md")
with open(filename, "w", encoding="utf-8") as f:
f.write(transcription.text + "\n\n" + transcription.text)
return transcription.text
def process_video(video_path, user_prompt):
base64Frames, audio_path = process_video_frames(video_path)
with open(video_path, "rb") as file:
transcription = client.audio.transcriptions.create(model="whisper-1", file=file)
response = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"},
{"role": "user", "content": [
"These are the frames from the video.",
*map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
{"type": "text", "text": f"The audio transcription is: {transcription.text}\n\n{user_prompt}"}
]}
],
temperature=0,
)
video_response = response.choices[0].message.content
filename_md = generate_filename(video_path + '- ' + video_response, "md")
with open(filename_md, "w", encoding="utf-8") as f:
f.write(video_response)
return video_response
def process_video_frames(video_path, seconds_per_frame=2):
base64Frames = []
base_video_path, _ = os.path.splitext(video_path)
video = cv2.VideoCapture(video_path)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = video.get(cv2.CAP_PROP_FPS)
frames_to_skip = int(fps * seconds_per_frame)
curr_frame = 0
while curr_frame < total_frames - 1:
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
success, frame = video.read()
if not success:
break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
video.release()
audio_path = f"{base_video_path}.mp3"
try:
clip = VideoFileClip(video_path)
clip.audio.write_audiofile(audio_path, bitrate="32k")
clip.audio.close()
clip.close()
except:
logger.info("No audio track found in video.")
return base64Frames, audio_path
def execute_code(code):
buffer = io.StringIO()
try:
with redirect_stdout(buffer):
exec(code, {}, {})
return buffer.getvalue(), None
except Exception as e:
return None, str(e)
finally:
buffer.close()
def extract_python_code(markdown_text):
pattern = r"```python\s*(.*?)\s*```"
matches = re.findall(pattern, markdown_text, re.DOTALL)
return matches
def SpeechSynthesis(result):
documentHTML5 = f'''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {{
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}}
</script>
</head>
<body>
<h1>π Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">{result}</textarea>
<br>
<button onclick="readAloud()">π Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=300)
def search_arxiv(query):
start_time = time.strftime("%Y-%m-%d %H:%M:%S")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response1 = client.predict(message="Hello!!", llm_results_use=5, database_choice="Semantic Search", llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", api_name="/update_with_rag_md")
Question = f'### π {query}\r\n'
References = response1[0]
References2 = response1[1]
filename = generate_filename(query, "md")
with open(filename, "w", encoding="utf-8") as f:
f.write(Question + References + References2)
st.session_state.messages.append({"role": "assistant", "content": References + References2})
response2 = client.predict(query, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")
if len(response2) > 10:
Answer = response2
SpeechSynthesis(Answer)
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + References2
return results
return References + References2
roleplaying_glossary = {
"π€ AI Concepts": {
"MoE (Mixture of Experts) π§ ": [
"As a leading AI health researcher, provide an overview of MoE, MAS, memory, and mirroring in healthcare applications.",
"Explain how MoE and MAS can be leveraged to create AGI and AMI systems for healthcare, as an AI architect."
],
"Multi Agent Systems (MAS) π€": [
"As a renowned MAS researcher, describe the key characteristics of distributed, autonomous, and cooperative MAS.",
"Discuss how MAS is applied in robotics, simulations, and decentralized problem-solving, as an AI engineer."
]
}
}
def display_glossary_grid(roleplaying_glossary):
search_urls = {
"ππArXiv": lambda k: f"/?q={quote(k)}",
"π": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}",
"π": lambda k: f"https://www.google.com/search?q={quote(k)}"
}
for category, details in roleplaying_glossary.items():
st.write(f"### {category}")
cols = st.columns(len(details))
for idx, (game, terms) in enumerate(details.items()):
with cols[idx]:
st.markdown(f"#### {game}")
for term in terms:
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()])
st.markdown(f"**{term}** <small>{links_md}</small>", unsafe_allow_html=True)
def create_zip_of_files(files):
zip_name = "assets.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_zip_download_link(zip_file):
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
def FileSidebar():
all_files = glob.glob("*.md")
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
Files1, Files2 = st.sidebar.columns(2)
with Files1:
if st.button("π Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
with Files2:
if st.button("β¬οΈ Download"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
file_contents = ''
file_name = ''
next_action = ''
for file in all_files:
col1, col2, col3, col4, col5 = st.sidebar.columns([1, 6, 1, 1, 1])
with col1:
if st.button("π", key=f"md_{file}"):
with open(file, "r", encoding='utf-8') as f:
file_contents = f.read()
file_name = file
next_action = 'md'
st.session_state['next_action'] = next_action
with col2:
st.markdown(get_download_link(file, "text/markdown", file))
with col3:
if st.button("π", key=f"open_{file}"):
with open(file, "r", encoding='utf-8') as f:
file_contents = f.read()
file_name = file
next_action = 'open'
st.session_state['lastfilename'] = file
st.session_state['filename'] = file
st.session_state['filetext'] = file_contents
st.session_state['next_action'] = next_action
with col4:
if st.button("βΆοΈ", key=f"read_{file}"):
with open(file, "r", encoding='utf-8') as f:
file_contents = f.read()
file_name = file
next_action = 'search'
st.session_state['next_action'] = next_action
with col5:
if st.button("π", key=f"delete_{file}"):
os.remove(file)
file_name = file
st.rerun()
next_action = 'delete'
st.session_state['next_action'] = next_action
if len(file_contents) > 0:
if next_action == 'open':
if 'lastfilename' not in st.session_state:
st.session_state['lastfilename'] = ''
if 'filename' not in st.session_state:
st.session_state['filename'] = ''
if 'filetext' not in st.session_state:
st.session_state['filetext'] = ''
open1, open2 = st.columns([.8, .2])
with open1:
file_name_input = st.text_input(key='file_name_input', label="File Name:", value=file_name)
file_content_area = st.text_area(key='file_content_area', label="File Contents:", value=file_contents, height=300)
if file_name_input != file_name:
os.rename(file_name, file_name_input)
st.markdown(f'Renamed file {file_name} to {file_name_input}.')
if file_content_area != file_contents:
with open(file_name_input, 'w', encoding='utf-8') as f:
f.write(file_content_area)
st.markdown(f'Saved {file_name_input}.')
if next_action == 'search':
st.text_area("File Contents:", file_contents, height=500)
filesearch = "Create a streamlit python user app with full code listing: " + file_contents
st.markdown(filesearch)
if st.button(key='rerun', label='πRe-Code'):
result = search_arxiv(filesearch)
st.markdown(result)
if next_action == 'md':
st.markdown(file_contents)
SpeechSynthesis(file_contents)
FileSidebar()
# Tabs
tabs = st.tabs(["Camera π·", "Download π₯", "OCR π", "Build π±", "Image Gen π¨", "PDF π", "Image πΌοΈ", "Audio π΅", "Video π₯", "Code π§βπ»", "Gallery π", "Search π"])
(tab_camera, tab_download, tab_ocr, tab_build, tab_imggen, tab_pdf, tab_image, tab_audio, tab_video, tab_code, tab_gallery, tab_search) = tabs
with tab_camera:
st.header("Camera Snap π·")
cols = st.columns(2)
for i, cam_key in enumerate(["cam0", "cam1"]):
with cols[i]:
cam_img = st.camera_input(f"Take a picture - Cam {i}", key=cam_key)
if cam_img:
filename = generate_filename(f"cam{i}", "png")
if st.session_state[f'cam{i}_file'] and os.path.exists(st.session_state[f'cam{i}_file']):
os.remove(st.session_state[f'cam{i}_file'])
with open(filename, "wb") as f:
f.write(cam_img.getvalue())
st.session_state[f'cam{i}_file'] = filename
st.session_state['history'].append(f"Snapshot from Cam {i}: {filename}")
st.image(Image.open(filename), caption=f"Camera {i}", use_container_width=True)
with tab_download:
st.header("Download PDFs π₯")
if st.button("Examples π"):
example_urls = ["https://arxiv.org/pdf/2308.03892", "https://arxiv.org/pdf/1912.01703"]
st.session_state['pdf_urls'] = "\n".join(example_urls)
url_input = st.text_area("Enter PDF URLs (one per line)", value=st.session_state.get('pdf_urls', ""), height=200)
if st.button("Robo-Download π€"):
urls = url_input.strip().split("\n")
progress_bar = st.progress(0)
for idx, url in enumerate(urls):
if url:
output_path = pdf_url_to_filename(url)
if download_pdf(url, output_path):
st.session_state['downloaded_pdfs'][url] = output_path
st.session_state['history'].append(f"Downloaded PDF: {output_path}")
st.session_state['asset_checkboxes'][output_path] = True
progress_bar.progress((idx + 1) / len(urls))
with tab_ocr:
st.header("Test OCR π")
all_files = get_gallery_files()
if all_files:
if st.button("OCR All Assets π"):
full_text = "# OCR Results\n\n"
for file in all_files:
if file.endswith('.png'):
image = Image.open(file)
else:
doc = fitz.open(file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
output_file = generate_filename(f"ocr_{os.path.basename(file)}", "txt")
result = asyncio.run(process_ocr(image, output_file))
full_text += f"## {os.path.basename(file)}\n\n{result}\n\n"
st.session_state['history'].append(f"OCR Test: {file} -> {output_file}")
md_output_file = generate_filename("full_ocr", "md")
with open(md_output_file, "w") as f:
f.write(full_text)
st.success(f"Full OCR saved to {md_output_file}")
st.markdown(get_download_link(md_output_file, "text/markdown", "Download Full OCR Markdown"), unsafe_allow_html=True)
selected_file = st.selectbox("Select Image or PDF", all_files, key="ocr_select")
if selected_file:
if selected_file.endswith('.png'):
image = Image.open(selected_file)
else:
doc = fitz.open(selected_file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
st.image(image, caption="Input Image", use_container_width=True)
if st.button("Run OCR π", key="ocr_run"):
output_file = generate_filename("ocr_output", "txt")
result = asyncio.run(process_ocr(image, output_file))
st.text_area("OCR Result", result, height=200)
st.session_state['history'].append(f"OCR Test: {selected_file} -> {output_file}")
with tab_build:
st.header("Build Titan π±")
model_type = st.selectbox("Model Type", ["Causal LM", "Diffusion"], key="build_type")
base_model = st.selectbox("Select Model", ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if model_type == "Causal LM" else ["OFA-Sys/small-stable-diffusion-v0", "stabilityai/stable-diffusion-2-base"])
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
if st.button("Download Model β¬οΈ"):
config = (ModelConfig if model_type == "Causal LM" else DiffusionConfig)(name=model_name, base_model=base_model, size="small")
builder = ModelBuilder() if model_type == "Causal LM" else DiffusionBuilder()
builder.load_model(base_model, config)
builder.save_model(config.model_path)
st.session_state['builder'] = builder
st.session_state['model_loaded'] = True
with tab_imggen:
st.header("Test Image Gen π¨")
prompt = st.text_area("Prompt", "Generate a futuristic cityscape")
if st.button("Run Image Gen π"):
output_file = generate_filename("gen_output", "png", prompt=prompt)
result = asyncio.run(process_image_gen(prompt, output_file))
st.image(result, caption="Generated Image", use_container_width=True)
st.session_state['history'].append(f"Image Gen Test: {prompt} -> {output_file}")
with tab_pdf:
st.header("PDF Process π")
uploaded_pdfs = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True)
view_mode = st.selectbox("View Mode", ["Single Page", "Two Pages"], key="pdf_view_mode")
if st.button("Process PDFs"):
for pdf_file in uploaded_pdfs:
pdf_path = generate_filename(pdf_file.name, "pdf")
with open(pdf_path, "wb") as f:
f.write(pdf_file.read())
snapshots = asyncio.run(process_pdf_snapshot(pdf_path, "twopage" if view_mode == "Two Pages" else "single"))
for snapshot in snapshots:
st.image(Image.open(snapshot), caption=snapshot)
text = process_image_with_prompt(Image.open(snapshot), "Extract the electronic text from image")
st.text_area(f"Extracted Text from {snapshot}", text)
code_prompt = f"Generate Python code based on this text:\n\n{text}"
code = process_text_with_prompt(text, code_prompt)
st.code(code, language="python")
if st.button(f"Execute Code from {snapshot}"):
output, error = execute_code(code)
if error:
st.error(f"Error: {error}")
else:
st.success(f"Output: {output or 'No output'}")
with tab_image:
st.header("Image Process πΌοΈ")
uploaded_images = st.file_uploader("Upload Images", type=["png", "jpg"], accept_multiple_files=True)
prompt = st.text_input("Prompt", "Extract the electronic text from image")
if st.button("Process Images"):
for img_file in uploaded_images:
img = Image.open(img_file)
st.image(img, caption=img_file.name)
result = process_image_with_prompt(img, prompt)
st.text_area(f"Result for {img_file.name}", result)
with tab_audio:
st.header("Audio Process π΅")
audio_bytes = audio_recorder()
if audio_bytes:
filename = generate_filename("recording", "wav")
with open(filename, "wb") as f:
f.write(audio_bytes)
st.audio(filename)
process_audio(filename)
with tab_video:
st.header("Video Process π₯")
video_input = st.file_uploader("Upload Video", type=["mp4"])
if video_input:
video_path = generate_filename(video_input.name, "mp4")
with open(video_path, "wb") as f:
f.write(video_input.read())
st.video(video_path)
result = process_video(video_path, "Summarize this video in markdown")
st.markdown(result)
with tab_code:
st.header("Code Executor π§βπ»")
uploaded_file = st.file_uploader("π€ Upload a Python (.py) or Markdown (.md) file", type=['py', 'md'])
if 'code' not in st.session_state:
st.session_state.code = '''import streamlit as st\nst.write("Hello, World!")'''
if uploaded_file:
content = uploaded_file.getvalue().decode()
if uploaded_file.type == "text/markdown":
code_blocks = extract_python_code(content)
code_input = code_blocks[0] if code_blocks else ""
else:
code_input = content
else:
code_input = st.text_area("Python Code", value=st.session_state.code, height=400)
col1, col2 = st.columns([1, 1])
with col1:
if st.button("βΆοΈ Run Code"):
output, error = execute_code(code_input)
if error:
st.error(f"Error: {error}")
else:
st.success(f"Output: {output or 'No output'}")
with col2:
if st.button("ποΈ Clear Code"):
st.session_state.code = ""
st.rerun()
with tab_gallery:
st.header("Gallery π")
all_files = get_gallery_files()
for file in all_files:
if file.endswith('.png'):
st.image(Image.open(file), caption=file)
elif file.endswith('.pdf'):
doc = fitz.open(file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=file)
doc.close()
elif file.endswith('.md'):
with open(file, "r") as f:
st.markdown(f.read())
elif file.endswith('.wav'):
st.audio(file)
elif file.endswith('.mp4'):
st.video(file)
with tab_search:
st.header("ArXiv Search π")
query = st.text_input("Search ArXiv", "")
if query:
result = search_arxiv(query)
st.markdown(result)
# Sidebar
st.sidebar.subheader("Gallery Settings")
st.session_state['gallery_size'] = st.sidebar.slider("Gallery Size", 1, 10, st.session_state['gallery_size'], key="gallery_size_slider")
st.sidebar.subheader("Action Logs π")
for record in log_records:
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}")
st.sidebar.subheader("History π")
for entry in st.session_state.get("history", []):
if entry:
st.sidebar.write(entry)
def update_gallery():
container = st.session_state['asset_gallery_container']
container.empty()
all_files = get_gallery_files()
if all_files:
container.markdown("### Asset Gallery πΈπ")
cols = container.columns(2)
for idx, file in enumerate(all_files[:st.session_state['gallery_size']]):
with cols[idx % 2]:
if file.endswith('.png'):
st.image(Image.open(file), caption=os.path.basename(file))
elif file.endswith('.pdf'):
doc = fitz.open(file)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5))
st.image(Image.frombytes("RGB", [pix.width, pix.height], pix.samples), caption=os.path.basename(file))
doc.close()
st.checkbox("Select", key=f"asset_{file}", value=st.session_state['asset_checkboxes'].get(file, False))
st.markdown(get_download_link(file, "application/octet-stream", "Download"), unsafe_allow_html=True)
if st.button("Delete", key=f"delete_{file}"):
os.remove(file)
st.session_state['asset_checkboxes'].pop(file, None)
st.experimental_rerun()
update_gallery()
# Chatbot
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
completion = client.chat.completions.create(model=st.session_state["openai_model"], messages=st.session_state.messages, stream=True)
response = ""
for chunk in completion:
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
st.write(response)
st.session_state.messages.append({"role": "assistant", "content": response}) |