File size: 13,027 Bytes
f331209
 
 
 
 
 
 
 
 
 
 
4cb9027
 
f331209
4cb9027
f331209
6265fea
f331209
6265fea
f331209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cb9027
f331209
 
 
 
 
4cb9027
 
 
6265fea
 
 
 
4cb9027
 
6265fea
4cb9027
f331209
6265fea
 
4cb9027
6265fea
f331209
 
 
 
 
4cb9027
 
 
6265fea
4cb9027
 
6265fea
4cb9027
f331209
6265fea
f331209
 
 
 
 
 
 
 
 
 
 
 
4cb9027
 
f331209
4cb9027
 
 
 
 
 
 
 
 
 
f331209
 
4cb9027
f331209
 
4cb9027
6265fea
 
4cb9027
f331209
6265fea
f331209
 
4cb9027
 
 
6265fea
4cb9027
6265fea
f331209
 
4cb9027
 
6265fea
4cb9027
 
f331209
6265fea
4cb9027
 
 
6265fea
f331209
 
 
4cb9027
6265fea
4cb9027
6265fea
4cb9027
6265fea
f331209
 
4cb9027
6265fea
4cb9027
f331209
4cb9027
6265fea
4cb9027
 
f331209
 
4cb9027
f331209
 
4cb9027
6265fea
 
 
 
4cb9027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6265fea
4cb9027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6265fea
4cb9027
 
6265fea
 
 
 
4cb9027
 
 
 
 
6265fea
4cb9027
 
 
 
 
 
6265fea
4cb9027
 
 
 
 
 
 
 
 
 
 
 
6265fea
4cb9027
 
 
 
 
6265fea
 
4cb9027
6265fea
4cb9027
6265fea
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#!/usr/bin/env python3
import os
import base64
import streamlit as st
import pandas as pd
import csv
import time
from dataclasses import dataclass
from PIL import Image
from datetime import datetime
import pytz
from streamlit_webrtc import webrtc_streamer, VideoTransformerBase
import av

# Minimal initial imports to reduce startup delay

st.set_page_config(page_title="SFT Tiny Titans 🚀", page_icon="🤖", layout="wide", initial_sidebar_state="expanded")

# Model Configurations
@dataclass
class ModelConfig:
    name: str
    base_model: str
    model_type: str = "causal_lm"
    @property
    def model_path(self):
        return f"models/{self.name}"

@dataclass
class DiffusionConfig:
    name: str
    base_model: str
    @property
    def model_path(self):
        return f"diffusion_models/{self.name}"

# Lazy-loaded Builders
class ModelBuilder:
    def __init__(self):
        self.config = None
        self.model = None
        self.tokenizer = None
    def load_model(self, model_path: str, config: ModelConfig):
        from transformers import AutoModelForCausalLM, AutoTokenizer
        import torch
        self.model = AutoModelForCausalLM.from_pretrained(model_path)
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        self.config = config
        self.model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
    def evaluate(self, prompt: str):
        import torch
        self.model.eval()
        with torch.no_grad():
            inputs = self.tokenizer(prompt, return_tensors="pt", max_length=128, truncation=True).to(self.model.device)
            outputs = self.model.generate(**inputs, max_new_tokens=50)
            return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

class DiffusionBuilder:
    def __init__(self):
        self.config = None
        self.pipeline = None
    def load_model(self, model_path: str, config: DiffusionConfig):
        from diffusers import StableDiffusionPipeline
        import torch
        self.pipeline = StableDiffusionPipeline.from_pretrained(model_path)
        self.pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
        self.config = config
    def generate(self, prompt: str):
        return self.pipeline(prompt, num_inference_steps=20).images[0]

# Utilities
def get_download_link(file_path, mime_type="text/plain", label="Download"):
    with open(file_path, 'rb') as f:
        data = f.read()
    b64 = base64.b64encode(data).decode()
    return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} 📥</a>'

def generate_filename(text_line):
    central = pytz.timezone('US/Central')
    timestamp = datetime.now(central).strftime("%Y%m%d_%I%M%S_%p")
    safe_text = ''.join(c if c.isalnum() else '_' for c in text_line[:50])
    return f"{timestamp}_{safe_text}.png"

def get_gallery_files(file_types):
    return sorted([f for ext in file_types for f in glob.glob(f"*.{ext}")])

# Video Transformer for WebRTC
class VideoSnapshot(VideoTransformerBase):
    def __init__(self):
        self.snapshot = None
    def transform(self, frame):
        img = frame.to_ndarray(format="bgr24")
        return img
    def take_snapshot(self):
        if self.snapshot is not None:
            return Image.fromarray(self.snapshot)

# Main App
st.title("SFT Tiny Titans 🚀 (Lean & Mean!)")

# Sidebar Galleries
st.sidebar.header("Media Gallery 🎨")
for gallery_type, file_types, emoji in [
    ("Images 📸", ["png", "jpg", "jpeg"], "🖼️"),
    ("Videos 🎥", ["mp4"], "🎬")
]:
    st.sidebar.subheader(f"{gallery_type} {emoji}")
    files = get_gallery_files(file_types)
    if files:
        cols = st.sidebar.columns(3)
        for idx, file in enumerate(files[:6]):
            with cols[idx % 3]:
                if "Images" in gallery_type:
                    st.image(Image.open(file), caption=file.split('/')[-1], use_column_width=True)
                elif "Videos" in gallery_type:
                    st.video(file)

# Sidebar Model Management
st.sidebar.subheader("Model Hub 🗂️")
model_type = st.sidebar.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"])
model_options = ["HuggingFaceTB/SmolLM-135M", "Qwen/Qwen1.5-0.5B-Chat"] if "NLP" in model_type else ["stabilityai/stable-diffusion-2-1", "CompVis/stable-diffusion-v1-4"]
selected_model = st.sidebar.selectbox("Select Model", ["None"] + model_options)
if selected_model != "None" and st.sidebar.button("Load Model 📂"):
    builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
    config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=selected_model)
    with st.spinner("Loading... ⏳"):
        builder.load_model(selected_model, config)
    st.session_state['builder'] = builder
    st.session_state['model_loaded'] = True

# Tabs
tab1, tab2, tab3, tab4 = st.tabs([
    "Build Titan 🌱",
    "Fine-Tune Titans 🔧",
    "Test Titans 🧪",
    "Camera Snap 📷"
])

with tab1:
    st.header("Build Titan 🌱 (Start Small!)")
    model_type = st.selectbox("Model Type", ["NLP (Causal LM)", "CV (Diffusion)"], key="build_type")
    base_model = st.selectbox("Select Model", model_options, key="build_model")
    if st.button("Download Model ⬇️"):
        config = (ModelConfig if "NLP" in model_type else DiffusionConfig)(name=f"titan_{int(time.time())}", base_model=base_model)
        builder = ModelBuilder() if "NLP" in model_type else DiffusionBuilder()
        with st.spinner("Fetching... ⏳"):
            builder.load_model(base_model, config)
        st.session_state['builder'] = builder
        st.session_state['model_loaded'] = True
        st.success("Titan ready! 🎉")

with tab2:
    st.header("Fine-Tune Titans 🔧 (Sharpen Up!)")
    if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
        st.warning("Load a Titan first! ⚠️")
    else:
        if isinstance(st.session_state['builder'], ModelBuilder):
            st.subheader("NLP Tune 🧠")
            uploaded_csv = st.file_uploader("Upload CSV", type="csv", key="nlp_csv")
            if uploaded_csv and st.button("Tune NLP 🔄"):
                from torch.utils.data import Dataset, DataLoader
                import torch
                class SFTDataset(Dataset):
                    def __init__(self, data, tokenizer):
                        self.data = data
                        self.tokenizer = tokenizer
                    def __len__(self):
                        return len(self.data)
                    def __getitem__(self, idx):
                        prompt = self.data[idx]["prompt"]
                        response = self.data[idx]["response"]
                        inputs = self.tokenizer(f"{prompt} {response}", return_tensors="pt", padding="max_length", max_length=128, truncation=True)
                        labels = inputs["input_ids"].clone()
                        labels[0, :len(self.tokenizer(prompt)["input_ids"][0])] = -100
                        return {"input_ids": inputs["input_ids"][0], "attention_mask": inputs["attention_mask"][0], "labels": labels[0]}
                data = []
                with open("temp.csv", "wb") as f:
                    f.write(uploaded_csv.read())
                with open("temp.csv", "r") as f:
                    reader = csv.DictReader(f)
                    for row in reader:
                        data.append({"prompt": row["prompt"], "response": row["response"]})
                dataset = SFTDataset(data, st.session_state['builder'].tokenizer)
                dataloader = DataLoader(dataset, batch_size=2)
                optimizer = torch.optim.AdamW(st.session_state['builder'].model.parameters(), lr=2e-5)
                st.session_state['builder'].model.train()
                for _ in range(3):  # Simplified epochs
                    for batch in dataloader:
                        optimizer.zero_grad()
                        outputs = st.session_state['builder'].model(**{k: v.to(st.session_state['builder'].model.device) for k, v in batch.items()})
                        outputs.loss.backward()
                        optimizer.step()
                st.success("NLP tuned! 🎉")
        elif isinstance(st.session_state['builder'], DiffusionBuilder):
            st.subheader("CV Tune 🎨")
            uploaded_files = st.file_uploader("Upload Images", type=["png", "jpg"], accept_multiple_files=True, key="cv_upload")
            text_input = st.text_area("Text (one per image)", "Bat Neon\nIron Glow", key="cv_text")
            if uploaded_files and st.button("Tune CV 🔄"):
                import torch
                images = [Image.open(f).convert("RGB") for f in uploaded_files]
                texts = text_input.splitlines()[:len(images)]
                optimizer = torch.optim.AdamW(st.session_state['builder'].pipeline.unet.parameters(), lr=1e-5)
                st.session_state['builder'].pipeline.unet.train()
                for _ in range(3):  # Simplified epochs
                    for img, text in zip(images, texts):
                        optimizer.zero_grad()
                        latents = st.session_state['builder'].pipeline.vae.encode(torch.tensor(np.array(img)).permute(2, 0, 1).unsqueeze(0).float().to(st.session_state['builder'].pipeline.device)).latent_dist.sample()
                        noise = torch.randn_like(latents)
                        timesteps = torch.randint(0, 1000, (1,), device=latents.device)
                        noisy_latents = st.session_state['builder'].pipeline.scheduler.add_noise(latents, noise, timesteps)
                        text_emb = st.session_state['builder'].pipeline.text_encoder(st.session_state['builder'].pipeline.tokenizer(text, return_tensors="pt").input_ids.to(st.session_state['builder'].pipeline.device))[0]
                        pred_noise = st.session_state['builder'].pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_emb).sample
                        loss = torch.nn.functional.mse_loss(pred_noise, noise)
                        loss.backward()
                        optimizer.step()
                for img, text in zip(images, texts):
                    filename = generate_filename(text)
                    img.save(filename)
                st.success("CV tuned! 🎉")

with tab3:
    st.header("Test Titans 🧪 (Showtime!)")
    if 'builder' not in st.session_state or not st.session_state.get('model_loaded', False):
        st.warning("Load a Titan first! ⚠️")
    else:
        if isinstance(st.session_state['builder'], ModelBuilder):
            st.subheader("NLP Test 🧠")
            prompt = st.text_area("Prompt", "What’s a superhero party?", key="nlp_test")
            if st.button("Test NLP ▶️"):
                result = st.session_state['builder'].evaluate(prompt)
                st.write(f"**Answer**: {result}")
        elif isinstance(st.session_state['builder'], DiffusionBuilder):
            st.subheader("CV Test 🎨")
            prompt = st.text_area("Prompt", "Neon Batman", key="cv_test")
            if st.button("Test CV ▶️"):
                with st.spinner("Generating... ⏳"):
                    img = st.session_state['builder'].generate(prompt)
                st.image(img, caption="Generated Art")

with tab4:
    st.header("Camera Snap 📷 (Live Action!)")
    ctx = webrtc_streamer(key="camera", video_transformer_factory=VideoSnapshot, rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]})
    if ctx.video_transformer:
        snapshot_text = st.text_input("Snapshot Text", "Live Snap")
        if st.button("Snap It! 📸"):
            snapshot = ctx.video_transformer.take_snapshot()
            if snapshot:
                filename = generate_filename(snapshot_text)
                snapshot.save(filename)
                st.image(snapshot, caption=filename)
                st.success("Snapped! 🎉")

    # Demo Dataset
    st.subheader("Demo CV Dataset 🎨")
    demo_texts = ["Bat Neon", "Iron Glow", "Thor Spark"]
    demo_images = [generate_filename(t) for t in demo_texts]
    for img, text in zip(demo_images, demo_texts):
        if not os.path.exists(img):
            Image.new("RGB", (100, 100)).save(img)
    st.code("\n".join([f"{i+1}. {t} -> {img}" for i, (t, img) in enumerate(zip(demo_texts, demo_images))]), language="text")
    if st.button("Download Demo CSV 📝"):
        csv_path = f"demo_cv_{int(time.time())}.csv"
        with open(csv_path, "w", newline="") as f:
            writer = csv.writer(f)
            writer.writerow(["image", "text"])
            for img, text in zip(demo_images, demo_texts):
                writer.writerow([img, text])
        st.markdown(get_download_link(csv_path, "text/csv", "Download Demo CSV"), unsafe_allow_html=True)