File size: 30,362 Bytes
de093f2 6893dd3 de093f2 cf22379 de093f2 be5a0c1 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 cf22379 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 cf22379 de093f2 cf22379 de093f2 6e0bba0 de093f2 cf22379 de093f2 6893dd3 6e0bba0 de093f2 6e0bba0 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 de093f2 6893dd3 6e0bba0 de093f2 6893dd3 de093f2 6893dd3 cf22379 de093f2 6e0bba0 de093f2 6e0bba0 de093f2 6e0bba0 de093f2 6e0bba0 de093f2 cf22379 de093f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
#!/usr/bin/env python
"""
Combined Multimodal AI Suite
- TorchTransformers-Diffusion-CV-SFT functionality (Camera, PDF, OCR, diffusion image gen, etc.)
- GPT-4o Omni: Text, Audio, Image, Video processing with chat and paper search
- Python Code Interpreter for code generation and execution
This app integrates all modalities and adds an “Integrated Workflow” tab that enables you to:
• Upload documents (e.g. double-page papers)
• Extract text via OCR and image processing
• Prompt GPT to generate Python code based on the extracted text
• Display and execute the generated code
Developed with Streamlit.
"""
import aiofiles
import asyncio
import base64
import fitz
import glob
import logging
import os
import pandas as pd
import pytz
import random
import re
import requests
import shutil
import streamlit as st
import time
import torch
import zipfile
from dataclasses import dataclass
from datetime import datetime
from diffusers import StableDiffusionPipeline
from io import BytesIO
from openai import OpenAI
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
from typing import Optional
# --- Additional Imports from GPT-4o Omni ---
import cv2
import json
import streamlit.components.v1 as components
import textract
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from dotenv import load_dotenv
from gradio_client import Client, handle_file
from huggingface_hub import InferenceClient
from moviepy import VideoFileClip
from urllib.parse import quote
from xml.etree import ElementTree as ET
import openai
# --- Code Interpreter Imports ---
import io
import sys
from contextlib import redirect_stdout
import mistune
# Load environment variables
load_dotenv()
# ------------------ Global Configuration ------------------
st.set_page_config(
page_title="Combined Multimodal AI Suite 🚀",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
'About': "Combined Multimodal AI Suite: Camera, OCR, Chat, Code Generation & Execution"
}
)
# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
# ------------------ Session State Defaults ------------------
if 'history' not in st.session_state:
st.session_state.history = []
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'gallery_files' not in st.session_state:
st.session_state.gallery_files = []
if 'builder' not in st.session_state:
st.session_state.builder = None
if 'model_loaded' not in st.session_state:
st.session_state.model_loaded = False
if 'processing' not in st.session_state:
st.session_state.processing = {}
if 'asset_checkboxes' not in st.session_state:
st.session_state.asset_checkboxes = {}
if 'downloaded_pdfs' not in st.session_state:
st.session_state.downloaded_pdfs = {}
if 'unique_counter' not in st.session_state:
st.session_state.unique_counter = 0
# ------------------ Utility Functions ------------------
def generate_filename(prompt, file_type):
"""Generates a safe filename based on prompt and file type."""
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def get_download_link(file_path, mime_type="application/octet-stream", label="Download"):
with open(file_path, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label}</a>'
def zip_directory(directory_path, zip_path):
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for root, _, files in os.walk(directory_path):
for file in files:
zipf.write(os.path.join(root, file),
os.path.relpath(os.path.join(root, file), os.path.dirname(directory_path)))
def get_gallery_files(file_types=["png", "pdf", "md"]):
return sorted(list({f for ext in file_types for f in glob.glob(f"*.{ext}")}))
def download_pdf(url, output_path):
try:
response = requests.get(url, stream=True, timeout=10)
if response.status_code == 200:
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return True
except requests.RequestException as e:
logger.error(f"Failed to download {url}: {e}")
return False
# ------------------ Model & Diffusion Builders ------------------
@dataclass
class ModelConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
model_type: str = "causal_lm"
@property
def model_path(self):
return f"models/{self.name}"
@dataclass
class DiffusionConfig:
name: str
base_model: str
size: str
domain: Optional[str] = None
@property
def model_path(self):
return f"diffusion_models/{self.name}"
class ModelBuilder:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.jokes = [
"Why did the AI go to therapy? Too many layers to unpack! 😂",
"Training complete! Time for a binary coffee break. ☕",
"I told my neural network a joke; it couldn't stop dropping bits! 🤖"
]
def load_model(self, model_path: str, config: Optional[ModelConfig] = None):
with st.spinner(f"Loading model from {model_path}..."):
self.model = AutoModelForCausalLM.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if config:
self.config = config
device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(device)
st.success(f"Model loaded! {random.choice(self.jokes)}")
return self
def save_model(self, path: str):
with st.spinner("Saving model..."):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
st.success(f"Model saved at {path}!")
class DiffusionBuilder:
def __init__(self):
self.config = None
self.pipeline = None
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
with st.spinner(f"Loading diffusion model from {model_path}..."):
self.pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cpu")
if config:
self.config = config
st.success("Diffusion model loaded!")
return self
def save_model(self, path: str):
with st.spinner("Saving diffusion model..."):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
st.success(f"Diffusion model saved at {path}!")
def generate(self, prompt: str):
return self.pipeline(prompt, num_inference_steps=20).images[0]
# ------------------ OCR & Image Processing Functions ------------------
async def process_ocr(image, output_file):
start_time = time.time()
status = st.empty()
status.text("Processing OCR... (0s)")
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, torch_dtype=torch.float32).to("cpu").eval()
temp_file = f"temp_{int(time.time())}.png"
image.save(temp_file)
result = model.chat(tokenizer, temp_file, ocr_type='ocr')
os.remove(temp_file)
elapsed = int(time.time() - start_time)
status.text(f"OCR completed in {elapsed}s!")
async with aiofiles.open(output_file, "w") as f:
await f.write(result)
return result
async def process_image_gen(prompt, output_file):
start_time = time.time()
status = st.empty()
status.text("Generating image... (0s)")
# Use diffusion builder from session if available; otherwise load a default
if st.session_state.get('builder') and isinstance(st.session_state.builder, DiffusionBuilder):
pipeline = st.session_state.builder.pipeline
else:
pipeline = StableDiffusionPipeline.from_pretrained("OFA-Sys/small-stable-diffusion-v0", torch_dtype=torch.float32).to("cpu")
gen_image = pipeline(prompt, num_inference_steps=20).images[0]
elapsed = int(time.time() - start_time)
status.text(f"Image generation completed in {elapsed}s!")
gen_image.save(output_file)
return gen_image
def process_image_with_prompt(image, prompt, model="gpt-4o-mini", detail="auto"):
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
messages = [{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_str}", "detail": detail}}
]
}]
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
return response.choices[0].message.content
except Exception as e:
return f"Error: {str(e)}"
def process_text_with_prompt(text, prompt, model="gpt-4o-mini"):
messages = [{"role": "user", "content": f"{prompt}\n\n{text}"}]
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
try:
response = client.chat.completions.create(model=model, messages=messages, max_tokens=300)
return response.choices[0].message.content
except Exception as e:
return f"Error: {str(e)}"
# ------------------ PDF Processing Functions ------------------
async def process_pdf_snapshot(pdf_path, mode="single"):
start_time = time.time()
status = st.empty()
status.text(f"Processing PDF Snapshot ({mode})... (0s)")
try:
doc = fitz.open(pdf_path)
output_files = []
if mode == "single":
page = doc[0]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename("single_snapshot", "png")
pix.save(output_file)
output_files.append(output_file)
elif mode == "twopage":
for i in range(min(2, len(doc))):
page = doc[i]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename(f"twopage_{i}", "png")
pix.save(output_file)
output_files.append(output_file)
elif mode == "allpages":
for i in range(len(doc)):
page = doc[i]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
output_file = generate_filename(f"page_{i}", "png")
pix.save(output_file)
output_files.append(output_file)
doc.close()
elapsed = int(time.time() - start_time)
status.text(f"PDF Snapshot ({mode}) completed in {elapsed}s!")
return output_files
except Exception as e:
status.error(f"Error: {str(e)}")
return []
# ------------------ GPT & Chat Functions ------------------
def process_text(text_input):
if text_input:
st.session_state.messages.append({"role": "user", "content": text_input})
with st.chat_message("user"):
st.markdown(text_input)
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
with st.chat_message("assistant"):
completion = client.chat.completions.create(
model="gpt-4o-2024-05-13",
messages=st.session_state.messages,
stream=False
)
return_text = completion.choices[0].message.content
st.write("Assistant: " + return_text)
st.session_state.messages.append({"role": "assistant", "content": return_text})
return return_text
def process_text2(text_input, model="gpt-4o-2024-05-13"):
if text_input:
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
completion = client.chat.completions.create(
model=model,
messages=st.session_state.messages,
stream=False
)
return_text = completion.choices[0].message.content
st.write("Assistant: " + return_text)
st.session_state.messages.append({"role": "assistant", "content": return_text})
return return_text
# ------------------ Audio & Video Processing Functions ------------------
def SpeechSynthesis(result):
documentHTML5 = f'''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {{
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}}
</script>
</head>
<body>
<h1>🔊 Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">{result}</textarea>
<br>
<button onclick="readAloud()">🔊 Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=300)
def process_audio(audio_input, text_input=''):
if audio_input:
# Save and read audio bytes
with open("temp_audio.wav", "wb") as file:
file.write(audio_input.getvalue())
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
transcription = client.audio.transcriptions.create(model="whisper-1", file=open("temp_audio.wav", "rb"))
st.session_state.messages.append({"role": "user", "content": transcription.text})
with st.chat_message("assistant"):
st.markdown(transcription.text)
SpeechSynthesis(transcription.text)
filename = generate_filename(transcription.text, "md")
with open(filename, "w", encoding="utf-8") as f:
f.write(transcription.text)
return transcription.text
def process_video_and_audio(video_input):
if video_input:
# Save video file
video_path = video_input.name
with open(video_path, "wb") as f:
f.write(video_input.getbuffer())
# Extract frames
base64Frames = []
video = cv2.VideoCapture(video_path)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = video.get(cv2.CAP_PROP_FPS)
frames_to_skip = int(fps * 1) # 1 second per frame
curr_frame = 0
while curr_frame < total_frames - 1:
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
success, frame = video.read()
if not success:
break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
video.release()
# Audio transcription from video
try:
clip = VideoFileClip(video_path)
audio_path = f"{os.path.splitext(video_path)[0]}.mp3"
clip.audio.write_audiofile(audio_path, bitrate="32k")
clip.audio.close()
clip.close()
with open(audio_path, "rb") as f:
audio_data = f.read()
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
transcription = client.audio.transcriptions.create(model="whisper-1", file=BytesIO(audio_data))
except Exception as e:
transcription = type("Dummy", (), {"text": "No transcript available."})()
# Display frames and transcript
st.markdown("### Video Frames")
for frame_b64 in base64Frames:
st.image(f"data:image/jpg;base64,{frame_b64}", use_container_width=True)
st.markdown("### Audio Transcription")
st.write(transcription.text)
return transcription.text
# ------------------ Python Code Executor Functions ------------------
def extract_python_code(markdown_text):
pattern = r"```python\s*(.*?)\s*```"
matches = re.findall(pattern, markdown_text, re.DOTALL)
return matches
def execute_code(code):
buffer = io.StringIO()
local_vars = {}
try:
with redirect_stdout(buffer):
exec(code, {}, local_vars)
output = buffer.getvalue()
return output, None
except Exception as e:
return None, str(e)
finally:
buffer.close()
def create_and_save_file(filename, prompt, response, should_save=True):
if not should_save:
return
base_filename, ext = os.path.splitext(filename)
if ext in ['.txt', '.htm', '.md']:
with open(f"{base_filename}.md", 'w', encoding='utf-8') as file:
file.write(response)
# ------------------ Integrated Workflow Function ------------------
def integrated_workflow():
st.header("Integrated Workflow: From Paper to Code")
st.markdown("""
1. **Upload a PDF or Image** of a paper (double-page images work best).
2. **Run OCR** to extract text.
3. **Generate Python Code** based on the extracted text using GPT.
4. **Review and Execute** the generated code.
""")
uploaded_file = st.file_uploader("Upload PDF or Image", type=["pdf", "png", "jpg", "jpeg"], key="integrated_file")
if uploaded_file:
# Save the uploaded file
file_path = f"uploaded_{uploaded_file.name}"
with open(file_path, "wb") as f:
f.write(uploaded_file.getvalue())
st.success(f"Uploaded file saved as {file_path}")
# If PDF, show first page snapshot; if image, load directly.
if uploaded_file.type == "application/pdf":
mode = st.selectbox("Snapshot Mode", ["single", "twopage", "allpages"])
snapshots = asyncio.run(process_pdf_snapshot(file_path, mode))
for snapshot in snapshots:
st.image(Image.open(snapshot), caption=f"Snapshot: {snapshot}", use_container_width=True)
else:
st.image(Image.open(file_path), caption="Uploaded Image", use_container_width=True)
# Run OCR on the file (using first page or the image itself)
if st.button("Run OCR on File"):
if uploaded_file.type == "application/pdf":
doc = fitz.open(file_path)
page = doc[0]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
temp_img = f"ocr_{os.path.basename(file_path)}.png"
pix.save(temp_img)
doc.close()
image = Image.open(temp_img)
else:
image = Image.open(file_path)
ocr_output_file = generate_filename("ocr_output", "txt")
ocr_result = asyncio.run(process_ocr(image, ocr_output_file))
st.text_area("OCR Output", ocr_result, height=200)
# Use extracted OCR text as prompt to generate python code
st.markdown("### Generate Python Code from OCR Text")
code_prompt = st.text_area("Edit Prompt for Code Generation", value=f"Generate a Python script that processes the following scientific text:\n\n{ocr_result}", height=200)
if st.button("Generate Code"):
code_generated = process_text_with_prompt(ocr_result, code_prompt, model="gpt-4o-mini")
st.code(code_generated, language="python")
# Save generated code
code_filename = generate_filename("generated_code", "py")
with open(code_filename, "w", encoding="utf-8") as f:
f.write(code_generated)
st.markdown(get_download_link(code_filename, "text/plain", "Download Generated Code"), unsafe_allow_html=True)
# Optionally execute the generated code
if st.button("Execute Generated Code"):
output, error = execute_code(code_generated)
if error:
st.error(f"Error executing code:\n{error}")
else:
st.success("Code executed successfully. Output:")
st.code(output)
# ------------------ Sidebar: Asset Gallery & Logs ------------------
def update_gallery():
container = st.sidebar.empty()
all_files = get_gallery_files()
if all_files:
container.markdown("### Asset Gallery")
cols = container.columns(2)
for idx, file in enumerate(all_files[:st.session_state.get('gallery_size', 5)]):
with cols[idx % 2]:
if file.endswith('.png'):
st.image(Image.open(file), caption=os.path.basename(file), use_container_width=True)
else:
st.markdown(os.path.basename(file))
if st.button("Delete "+os.path.basename(file), key="del_"+file):
os.remove(file)
st.experimental_rerun()
update_gallery()
st.sidebar.subheader("Action Logs")
for record in log_records:
st.sidebar.write(f"{record.asctime} - {record.levelname} - {record.message}")
# ------------------ Main App Navigation ------------------
st.title("Combined Multimodal AI Suite")
tabs = st.tabs(["Home", "Camera & Images", "PDF & Documents", "Multimodal Chat", "Code Executor", "Integrated Workflow"])
# --- Home Tab ---
with tabs[0]:
st.header("Welcome to the Combined Multimodal AI Suite")
st.markdown("""
This application integrates multiple AI functionalities:
- **Camera & Image Processing:** Capture images, generate new images using diffusion models.
- **PDF & Document Processing:** Download PDFs, perform OCR, and generate markdown summaries.
- **Multimodal Chat:** Chat with GPT-4o using text, audio, image, and video inputs.
- **Code Executor:** Write, generate, and execute Python code interactively.
- **Integrated Workflow:** Seamlessly extract text from papers and generate & run Python code.
Use the tabs above to explore each modality.
""")
# --- Camera & Images Tab ---
with tabs[1]:
st.header("Camera & Image Processing")
st.subheader("Capture and Process Images")
col1, col2 = st.columns(2)
with col1:
cam0_img = st.camera_input("Take a picture - Cam 0", key="cam0")
if cam0_img:
filename = generate_filename("cam0_snapshot", "png")
with open(filename, "wb") as f:
f.write(cam0_img.getvalue())
st.image(Image.open(filename), caption="Camera 0 Snapshot", use_container_width=True)
st.session_state.history.append(f"Captured {filename}")
with col2:
cam1_img = st.camera_input("Take a picture - Cam 1", key="cam1")
if cam1_img:
filename = generate_filename("cam1_snapshot", "png")
with open(filename, "wb") as f:
f.write(cam1_img.getvalue())
st.image(Image.open(filename), caption="Camera 1 Snapshot", use_container_width=True)
st.session_state.history.append(f"Captured {filename}")
st.markdown("---")
st.subheader("Generate New Image with Diffusion")
prompt_img = st.text_input("Enter prompt for image generation", "A neon futuristic cityscape")
if st.button("Generate Image"):
output_file = generate_filename("gen_output", "png")
result_img = asyncio.run(process_image_gen(prompt_img, output_file))
st.image(result_img, caption="Generated Image", use_container_width=True)
# --- PDF & Documents Tab ---
with tabs[2]:
st.header("PDF & Document Processing")
st.subheader("Download and Process PDFs")
url_input = st.text_area("Enter PDF URLs (one per line)", height=100)
if st.button("Download PDFs"):
urls = [u.strip() for u in url_input.splitlines() if u.strip()]
progress_bar = st.progress(0)
for idx, url in enumerate(urls):
output_path = generate_filename(url, "pdf")
if download_pdf(url, output_path):
st.session_state.downloaded_pdfs[url] = output_path
st.success(f"Downloaded: {output_path}")
progress_bar.progress((idx + 1) / len(urls))
st.markdown("---")
st.subheader("OCR & PDF Snapshot")
all_assets = get_gallery_files()
selected_asset = st.selectbox("Select an asset", all_assets) if all_assets else None
if selected_asset and st.button("Run OCR on Selected"):
if selected_asset.endswith('.png'):
image = Image.open(selected_asset)
else:
doc = fitz.open(selected_asset)
pix = doc[0].get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
output_file = generate_filename("ocr_output", "txt")
ocr_result = asyncio.run(process_ocr(image, output_file))
st.text_area("OCR Result", ocr_result, height=200)
st.markdown("---")
st.subheader("Markdown Gallery")
md_files = sorted(glob.glob("*.md"))
if md_files:
for md in md_files:
st.markdown(f"**{md}**")
st.markdown(get_download_link(md, "text/markdown", "Download MD"), unsafe_allow_html=True)
# --- Multimodal Chat Tab ---
with tabs[3]:
st.header("Multimodal Chat")
st.markdown("Chat with GPT-4o using text, audio, image, or video inputs.")
mode = st.selectbox("Select Mode", ["Text", "Image", "Audio", "Video"])
if mode == "Text":
text_input = st.text_input("Enter your text prompt")
if st.button("Send Text"):
response = process_text(text_input)
st.markdown(response)
elif mode == "Image":
text_prompt = st.text_input("Enter prompt for image analysis", "Describe this image and list 10 facts.")
image_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"], key="chat_image")
if image_file:
image = Image.open(image_file)
st.image(image, caption="Uploaded Image", use_container_width=True)
response = process_image_with_prompt(image, text_prompt)
st.markdown(response)
elif mode == "Audio":
st.markdown("Record or upload an audio file for transcription.")
audio_bytes = audio_recorder()
if audio_bytes:
st.audio(audio_bytes, format="audio/wav")
transcription = process_audio(audio_bytes)
st.markdown(transcription)
elif mode == "Video":
video_file = st.file_uploader("Upload a video file", type=["mp4", "webm"], key="chat_video")
if video_file:
transcript = process_video_and_audio(video_file)
st.markdown("Video Transcript:")
st.write(transcript)
st.markdown("---")
st.subheader("Chat History")
for msg in st.session_state.messages:
with st.chat_message(msg["role"]):
st.markdown(msg["content"])
# --- Code Executor Tab ---
with tabs[4]:
st.header("Python Code Executor")
st.markdown("Enter Python code below or upload a .py/.md file. The code will be executed in a sandboxed environment.")
uploaded_file = st.file_uploader("Upload Python (.py) or Markdown (.md) file", type=["py", "md"], key="code_file")
if 'code' not in st.session_state:
st.session_state.code = """import streamlit as st
st.write("Hello from the Python Code Executor!")"""
if uploaded_file is None:
code_input = st.text_area("Python Code Editor:", value=st.session_state.code, height=400, key="code_editor")
else:
content = uploaded_file.getvalue().decode()
if uploaded_file.type == "text/markdown":
code_blocks = extract_python_code(content)
if code_blocks:
code_input = code_blocks[0]
else:
st.error("No Python code block found in the markdown file!")
code_input = ""
else:
code_input = content
st.code(code_input, language='python')
col1, col2 = st.columns([1,1])
with col1:
if st.button("▶️ Run Code"):
if code_input:
output, error = execute_code(code_input)
if error:
st.error(f"Error:\n{error}")
elif output:
st.code(output)
else:
st.success("Code executed with no output.")
else:
st.warning("Please enter some code!")
with col2:
if st.button("🗑️ Clear Code"):
st.session_state.code = ""
st.experimental_rerun()
with st.expander("How to use the Code Executor"):
st.markdown("""
- Enter or upload Python code.
- Click **Run Code** to execute.
- The output (or any errors) will be displayed below.
""")
# --- Integrated Workflow Tab ---
with tabs[5]:
integrated_workflow()
# ------------------ Chat Input at Bottom ------------------
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - How can I help you?"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
response = process_text2(prompt)
st.session_state.messages.append({"role": "assistant", "content": response})
|