File size: 35,509 Bytes
f0c19c8 01d7524 f0c19c8 01d7524 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 01d7524 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 01d7524 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 01d7524 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6b95d66 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6b95d66 f0c19c8 4c3762f 01d7524 9f7c23f 01d7524 9f7c23f 6b95d66 9f7c23f 6b95d66 9f7c23f 01d7524 9f7c23f 01d7524 4c3762f f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6b95d66 6217849 f0c19c8 6b95d66 f0c19c8 6b95d66 f0c19c8 6b95d66 f0c19c8 6b95d66 f0c19c8 6b95d66 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 01d7524 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6b95d66 4c3762f 6b95d66 f0c19c8 6b95d66 400ee5c 6b95d66 400ee5c 6b95d66 f0c19c8 6b95d66 400ee5c 6b95d66 400ee5c 6b95d66 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 6217849 f0c19c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
#!/usr/bin/env python3
import os
import glob
import base64
import streamlit as st
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
import csv
import time
from dataclasses import dataclass
from typing import Optional
import zipfile
import math
from PIL import Image
import random
import logging
import numpy as np
import cv2
from diffusers import DiffusionPipeline
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
log_records = []
class LogCaptureHandler(logging.Handler):
def emit(self, record):
log_records.append(record)
logger.addHandler(LogCaptureHandler())
st.set_page_config(
page_title="SFT Tiny Titans ๐",
page_icon="๐ค",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a Bug': 'https://huggingface.co/spaces/awacke1',
'About': "Tiny Titans: Small diffusion models, big CV dreams! ๐"
}
)
if 'captured_images' not in st.session_state:
st.session_state['captured_images'] = []
if 'cv_builder' not in st.session_state:
st.session_state['cv_builder'] = None
if 'cv_loaded' not in st.session_state:
st.session_state['cv_loaded'] = False
if 'active_tab' not in st.session_state:
st.session_state['active_tab'] = "Build Titan ๐ฑ"
@dataclass
class DiffusionConfig:
"""Config for our diffusion heroes ๐ฆธโโ๏ธ - Keeps the blueprint snappy!"""
name: str
base_model: str
size: str
@property
def model_path(self):
return f"diffusion_models/{self.name}"
class DiffusionDataset(Dataset):
"""Pixel party platter ๐ - Images and text for diffusion delight!"""
def __init__(self, images, texts):
self.images = images
self.texts = texts
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
return {"image": self.images[idx], "text": self.texts[idx]}
class MicroDiffusionBuilder:
"""Tiny titan of diffusion ๐ฃ - Small but mighty for quick demos!"""
def __init__(self):
self.config = None
self.pipeline = None
self.jokes = ["Micro but mighty! ๐ช", "Small pixels, big dreams! ๐"]
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
try:
with st.spinner(f"Loading {model_path}... โณ (Tiny titan powering up!)"):
self.pipeline = DiffusionPipeline.from_pretrained(model_path, low_cpu_mem_usage=True)
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
if config:
self.config = config
st.success(f"Model loaded! ๐ {random.choice(self.jokes)}")
logger.info(f"Loaded Micro Diffusion: {model_path}")
except Exception as e:
st.error(f"Failed to load {model_path}: {str(e)} ๐ฅ (Tiny titan tripped!)")
logger.error(f"Failed to load {model_path}: {str(e)}")
raise
return self
def fine_tune_sft(self, images, texts, epochs=3):
try:
dataset = DiffusionDataset(images, texts)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
self.pipeline.unet.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for epoch in range(epochs):
with st.spinner(f"Epoch {epoch + 1}/{epochs}... โ๏ธ (Micro titan flexing!)"):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
image = batch["image"][0].to(device)
text = batch["text"][0]
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(device)).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(device))[0]
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} done! Loss: {total_loss / len(dataloader):.4f}")
st.success(f"Micro Diffusion tuned! ๐ {random.choice(self.jokes)}")
logger.info(f"Fine-tuned Micro Diffusion: {self.config.name}")
except Exception as e:
st.error(f"Tuning failed: {str(e)} ๐ฅ (Micro snag!)")
logger.error(f"Tuning failed: {str(e)}")
raise
return self
def save_model(self, path: str):
try:
with st.spinner("Saving model... ๐พ (Packing tiny pixels!)"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
st.success(f"Saved at {path}! โ
Tiny titan secured!")
logger.info(f"Saved at {path}")
except Exception as e:
st.error(f"Save failed: {str(e)} ๐ฅ (Packing mishap!)")
logger.error(f"Save failed: {str(e)}")
raise
def generate(self, prompt: str):
try:
return self.pipeline(prompt, num_inference_steps=20).images[0]
except Exception as e:
st.error(f"Generation failed: {str(e)} ๐ฅ (Pixel oopsie!)")
logger.error(f"Generation failed: {str(e)}")
raise
class LatentDiffusionBuilder:
"""Scaled-down dreamer ๐ - Latent magic for efficient artistry!"""
def __init__(self):
self.config = None
self.pipeline = None
self.jokes = ["Latent vibes only! ๐", "Small scale, big style! ๐จ"]
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
try:
with st.spinner(f"Loading {model_path}... โณ (Latent titan rising!)"):
self.pipeline = DiffusionPipeline.from_pretrained(model_path, low_cpu_mem_usage=True)
self.pipeline.unet = torch.nn.Sequential(*list(self.pipeline.unet.children())[:2]) # Scale down U-Net
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
if config:
self.config = config
st.success(f"Model loaded! ๐ {random.choice(self.jokes)}")
logger.info(f"Loaded Latent Diffusion: {model_path}")
except Exception as e:
st.error(f"Failed to load {model_path}: {str(e)} ๐ฅ (Latent hiccup!)")
logger.error(f"Failed to load {model_path}: {str(e)}")
raise
return self
def fine_tune_sft(self, images, texts, epochs=3):
try:
dataset = DiffusionDataset(images, texts)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
self.pipeline.unet.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for epoch in range(epochs):
with st.spinner(f"Epoch {epoch + 1}/{epochs}... โ๏ธ (Latent titan shaping up!)"):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
image = batch["image"][0].to(device)
text = batch["text"][0]
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(device)).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(device))[0]
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} done! Loss: {total_loss / len(dataloader):.4f}")
st.success(f"Latent Diffusion tuned! ๐ {random.choice(self.jokes)}")
logger.info(f"Fine-tuned Latent Diffusion: {self.config.name}")
except Exception as e:
st.error(f"Tuning failed: {str(e)} ๐ฅ (Latent snag!)")
logger.error(f"Tuning failed: {str(e)}")
raise
return self
def save_model(self, path: str):
try:
with st.spinner("Saving model... ๐พ (Packing latent dreams!)"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
st.success(f"Saved at {path}! โ
Latent titan stashed!")
logger.info(f"Saved at {path}")
except Exception as e:
st.error(f"Save failed: {str(e)} ๐ฅ (Dreamy mishap!)")
logger.error(f"Save failed: {str(e)}")
raise
def generate(self, prompt: str):
try:
return self.pipeline(prompt, num_inference_steps=30).images[0]
except Exception as e:
st.error(f"Generation failed: {str(e)} ๐ฅ (Latent oopsie!)")
logger.error(f"Generation failed: {str(e)}")
raise
class FluxDiffusionBuilder:
"""Distilled dynamo โก - High-quality pixels in a small package!"""
def __init__(self):
self.config = None
self.pipeline = None
self.jokes = ["Flux-tastic! โจ", "Small size, big wow! ๐"]
def load_model(self, model_path: str, config: Optional[DiffusionConfig] = None):
try:
with st.spinner(f"Loading {model_path}... โณ (Flux titan charging!)"):
self.pipeline = DiffusionPipeline.from_pretrained(model_path, low_cpu_mem_usage=True)
self.pipeline.to("cuda" if torch.cuda.is_available() else "cpu")
if config:
self.config = config
st.success(f"Model loaded! ๐ {random.choice(self.jokes)}")
logger.info(f"Loaded FLUX.1 Distilled: {model_path}")
except Exception as e:
st.error(f"Failed to load {model_path}: {str(e)} ๐ฅ (Flux fizzle!)")
logger.error(f"Failed to load {model_path}: {str(e)}")
raise
return self
def fine_tune_sft(self, images, texts, epochs=3):
try:
dataset = DiffusionDataset(images, texts)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
optimizer = torch.optim.AdamW(self.pipeline.unet.parameters(), lr=1e-5)
self.pipeline.unet.train()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for epoch in range(epochs):
with st.spinner(f"Epoch {epoch + 1}/{epochs}... โ๏ธ (Flux titan powering up!)"):
total_loss = 0
for batch in dataloader:
optimizer.zero_grad()
image = batch["image"][0].to(device)
text = batch["text"][0]
latents = self.pipeline.vae.encode(torch.tensor(np.array(image)).permute(2, 0, 1).unsqueeze(0).float().to(device)).latent_dist.sample()
noise = torch.randn_like(latents)
timesteps = torch.randint(0, self.pipeline.scheduler.num_train_timesteps, (latents.shape[0],), device=latents.device)
noisy_latents = self.pipeline.scheduler.add_noise(latents, noise, timesteps)
text_embeddings = self.pipeline.text_encoder(self.pipeline.tokenizer(text, return_tensors="pt").input_ids.to(device))[0]
pred_noise = self.pipeline.unet(noisy_latents, timesteps, encoder_hidden_states=text_embeddings).sample
loss = torch.nn.functional.mse_loss(pred_noise, noise)
loss.backward()
optimizer.step()
total_loss += loss.item()
st.write(f"Epoch {epoch + 1} done! Loss: {total_loss / len(dataloader):.4f}")
st.success(f"FLUX Diffusion tuned! ๐ {random.choice(self.jokes)}")
logger.info(f"Fine-tuned FLUX.1 Distilled: {self.config.name}")
except Exception as e:
st.error(f"Tuning failed: {str(e)} ๐ฅ (Flux snag!)")
logger.error(f"Tuning failed: {str(e)}")
raise
return self
def save_model(self, path: str):
try:
with st.spinner("Saving model... ๐พ (Packing flux magic!)"):
os.makedirs(os.path.dirname(path), exist_ok=True)
self.pipeline.save_pretrained(path)
st.success(f"Saved at {path}! โ
Flux titan secured!")
logger.info(f"Saved at {path}")
except Exception as e:
st.error(f"Save failed: {str(e)} ๐ฅ (Fluxy mishap!)")
logger.error(f"Save failed: {str(e)}")
raise
def generate(self, prompt: str):
try:
return self.pipeline(prompt, num_inference_steps=50).images[0]
except Exception as e:
st.error(f"Generation failed: {str(e)} ๐ฅ (Flux oopsie!)")
logger.error(f"Generation failed: {str(e)}")
raise
def generate_filename(sequence, ext="png"):
"""Time-stamped snapshots โฐ - Keeps our pics organized with cam flair!"""
from datetime import datetime
import pytz
central = pytz.timezone('US/Central')
dt = datetime.now(central)
return f"{dt.strftime('%m-%d-%Y-%I-%M-%S-%p')}-{sequence}.{ext}"
def get_download_link(file_path, mime_type="text/plain", label="Download"):
"""Magic link maker ๐ - Snag your files with a click!"""
try:
with open(file_path, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:{mime_type};base64,{b64}" download="{os.path.basename(file_path)}">{label} ๐ฅ</a>'
except Exception as e:
logger.error(f"Failed to generate link for {file_path}: {str(e)}")
return f"Error: Could not generate link for {file_path}"
def zip_files(files, zip_path):
"""Zip zap zoo ๐ - Bundle up your goodies!"""
try:
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for file in files:
zipf.write(file, os.path.basename(file))
logger.info(f"Created ZIP file: {zip_path}")
except Exception as e:
logger.error(f"Failed to create ZIP {zip_path}: {str(e)}")
raise
def delete_files(files):
"""Trash titan ๐๏ธ - Clear the stage for new stars!"""
try:
for file in files:
os.remove(file)
logger.info(f"Deleted file: {file}")
st.session_state['captured_images'] = [f for f in st.session_state['captured_images'] if f not in files]
except Exception as e:
logger.error(f"Failed to delete files: {str(e)}")
raise
def get_model_files():
"""Model treasure hunt ๐บ๏ธ - Find our diffusion gems!"""
return [d for d in glob.glob("diffusion_models/*") if os.path.isdir(d)]
def get_gallery_files(file_types):
"""Gallery curator ๐ผ๏ธ - Showcase our pixel masterpieces!"""
return sorted(list(set(f for ext in file_types for f in glob.glob(f"*.{ext}"))))
def update_gallery():
"""Gallery refresh ๐ - Keep the art flowing!"""
media_files = get_gallery_files(["png"])
if media_files:
cols = st.sidebar.columns(2)
for idx, file in enumerate(media_files[:gallery_size * 2]):
with cols[idx % 2]:
st.image(Image.open(file), caption=file, use_container_width=True)
st.markdown(get_download_link(file, "image/png", "Download Snap ๐ธ"), unsafe_allow_html=True)
def get_available_video_devices():
"""Camera roll call ๐ฅ - Whoโs ready to shine? Fallback if OpenCV flops!"""
video_devices = [f"Camera {i} ๐ฅ" for i in range(6)] # Default to 6 cams
try:
detected = []
for i in range(6): # Limit to 6 as per your setup
cap = cv2.VideoCapture(i, cv2.CAP_V4L2)
if not cap.isOpened():
cap = cv2.VideoCapture(i)
if cap.isOpened():
detected.append(f"Camera {i} ๐ฅ")
logger.info(f"Detected camera at index {i}")
cap.release()
if detected:
video_devices = detected
else:
logger.warning("No cameras detected by OpenCV; using defaults")
except Exception as e:
logger.error(f"Error detecting cameras: {str(e)} - Falling back to defaults")
return video_devices
st.title("SFT Tiny Titans ๐ (Small Diffusion Delight!)")
st.sidebar.header("Media Gallery ๐จ")
gallery_size = st.sidebar.slider("Gallery Size ๐ธ", 1, 10, 4, help="How many snaps to flaunt? ๐")
update_gallery()
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("Download All ๐ฆ"):
media_files = get_gallery_files(["png"])
if media_files:
zip_path = f"snapshot_collection_{int(time.time())}.zip"
zip_files(media_files, zip_path)
st.sidebar.markdown(get_download_link(zip_path, "application/zip", "Download All Snaps ๐ฆ"), unsafe_allow_html=True)
st.sidebar.success("Snaps zipped! ๐ Grab your loot!")
else:
st.sidebar.warning("No snaps to zip! ๐ธ Snap some first!")
with col2:
if st.button("Delete All ๐๏ธ"):
media_files = get_gallery_files(["png"])
if media_files:
delete_files(media_files)
st.sidebar.success("Snaps vanquished! ๐งน Gallery cleared!")
update_gallery()
else:
st.sidebar.warning("Nothing to delete! ๐ธ Snap some pics!")
uploaded_files = st.sidebar.file_uploader("Upload Goodies ๐ต๐ฅ๐ผ๏ธ๐๐", type=["mp3", "mp4", "png", "jpeg", "md", "pdf", "docx"], accept_multiple_files=True)
if uploaded_files:
for uploaded_file in uploaded_files:
filename = uploaded_file.name
with open(filename, "wb") as f:
f.write(uploaded_file.getvalue())
logger.info(f"Uploaded file: {filename}")
st.sidebar.subheader("Image Gallery ๐ผ๏ธ")
image_files = get_gallery_files(["png", "jpeg"])
if image_files:
cols = st.sidebar.columns(2)
for idx, file in enumerate(image_files[:gallery_size * 2]):
with cols[idx % 2]:
st.image(Image.open(file), caption=file, use_container_width=True)
st.markdown(get_download_link(file, "image/png" if file.endswith(".png") else "image/jpeg", f"Save Pic ๐ผ๏ธ"), unsafe_allow_html=True)
st.sidebar.subheader("Model Management ๐๏ธ")
model_dirs = get_model_files()
selected_model = st.sidebar.selectbox("Select Saved Model", ["None"] + model_dirs)
model_type = st.sidebar.selectbox("Diffusion Type", ["Micro Diffusion", "Latent Diffusion", "FLUX.1 Distilled"])
if selected_model != "None" and st.sidebar.button("Load Model ๐"):
builder = {
"Micro Diffusion": MicroDiffusionBuilder,
"Latent Diffusion": LatentDiffusionBuilder,
"FLUX.1 Distilled": FluxDiffusionBuilder
}[model_type]()
config = DiffusionConfig(name=os.path.basename(selected_model), base_model="unknown", size="small")
try:
builder.load_model(selected_model, config)
st.session_state['cv_builder'] = builder
st.session_state['cv_loaded'] = True
st.rerun()
except Exception as e:
st.error(f"Model load failed: {str(e)} ๐ฅ (Check logs for details!)")
st.sidebar.subheader("Model Status ๐ฆ")
st.sidebar.write(f"**CV Model**: {'Loaded' if st.session_state['cv_loaded'] else 'Not Loaded'} {'(Active)' if st.session_state['cv_loaded'] and isinstance(st.session_state.get('cv_builder'), (MicroDiffusionBuilder, LatentDiffusionBuilder, FluxDiffusionBuilder)) else ''}")
tabs = ["Build Titan ๐ฑ", "Camera Snap ๐ท", "Fine-Tune Titan (CV) ๐ง", "Test Titan (CV) ๐งช", "Agentic RAG Party (CV) ๐"]
tab1, tab2, tab3, tab4, tab5 = st.tabs(tabs)
for i, tab in enumerate(tabs):
if st.session_state['active_tab'] != tab and st.session_state.get(f'tab{i}_active', False):
logger.info(f"Switched to tab: {tab}")
st.session_state['active_tab'] = tab
st.session_state[f'tab{i}_active'] = (st.session_state['active_tab'] == tab)
with tab1:
st.header("Build Titan ๐ฑ")
model_type = st.selectbox("Diffusion Type", ["Micro Diffusion", "Latent Diffusion", "FLUX.1 Distilled"], key="build_type")
base_model = st.selectbox("Select Tiny Model",
["CompVis/ldm-text2im-large-256" if model_type == "Micro Diffusion" else "runwayml/stable-diffusion-v1-5" if model_type == "Latent Diffusion" else "black-forest-labs/flux.1-distilled"])
model_name = st.text_input("Model Name", f"tiny-titan-{int(time.time())}")
if st.button("Download Model โฌ๏ธ"):
config = DiffusionConfig(name=model_name, base_model=base_model, size="small")
builder = {
"Micro Diffusion": MicroDiffusionBuilder,
"Latent Diffusion": LatentDiffusionBuilder,
"FLUX.1 Distilled": FluxDiffusionBuilder
}[model_type]()
try:
builder.load_model(base_model, config)
builder.save_model(config.model_path)
st.session_state['cv_builder'] = builder
st.session_state['cv_loaded'] = True
st.rerun()
except Exception as e:
st.error(f"Model build failed: {str(e)} ๐ฅ (Check logs for details!)")
with tab2:
st.header("Camera Snap ๐ท (Dual Capture Fiesta!)")
video_devices = get_available_video_devices()
st.write(f"๐ Detected Cameras: {', '.join(video_devices)}")
st.info("Switch cams in your browser settings (e.g., Chrome > Privacy > Camera) since Iโm a browser star! ๐")
st.subheader("Camera 0 ๐ฌ - Lights, Camera, Action!")
cam0_cols = st.columns(4)
with cam0_cols[0]:
cam0_device = st.selectbox("Cam ๐ท", video_devices, index=0, key="cam0_device", help="Pick your star cam! ๐")
with cam0_cols[1]:
cam0_label = st.text_input("Tag ๐ท๏ธ", "Cam 0 Snap", key="cam0_label", help="Name your masterpiece! ๐จ")
with cam0_cols[2]:
cam0_help = st.text_input("Hint ๐ก", "Snap a heroic moment! ๐ฆธโโ๏ธ", key="cam0_help", help="Give a fun tip!")
with cam0_cols[3]:
cam0_vis = st.selectbox("Show ๐ผ๏ธ", ["visible", "hidden", "collapsed"], index=0, key="cam0_vis", help="Label vibes: Visible, Sneaky, or Gone!")
st.subheader("Camera 1 ๐ฅ - Roll the Film!")
cam1_cols = st.columns(4)
with cam1_cols[0]:
cam1_device = st.selectbox("Cam ๐ท", video_devices, index=1 if len(video_devices) > 1 else 0, key="cam1_device", help="Choose your blockbuster cam! ๐ฌ")
with cam1_cols[1]:
cam1_label = st.text_input("Tag ๐ท๏ธ", "Cam 1 Snap", key="cam1_label", help="Title your epic shot! ๐ ")
with cam1_cols[2]:
cam1_help = st.text_input("Hint ๐ก", "Grab an epic frame! ๐", key="cam1_help", help="Drop a cheeky hint!")
with cam1_cols[3]:
cam1_vis = st.selectbox("Show ๐ผ๏ธ", ["visible", "hidden", "collapsed"], index=0, key="cam1_vis", help="Label style: Show it, Hide it, Poof!")
cols = st.columns(2)
with cols[0]:
st.subheader(f"Camera 0 ({cam0_device}) ๐ฌ")
cam0_img = st.camera_input(
label=cam0_label,
key="cam0",
help=cam0_help,
disabled=False,
label_visibility=cam0_vis
)
if cam0_img:
filename = generate_filename("cam0")
with open(filename, "wb") as f:
f.write(cam0_img.getvalue())
st.image(Image.open(filename), caption=filename, use_container_width=True)
logger.info(f"Saved snapshot from Camera 0: {filename}")
st.session_state['captured_images'].append(filename)
update_gallery()
st.info("๐จ One snap at a timeโyour Titanโs too cool for bursts! ๐")
with cols[1]:
st.subheader(f"Camera 1 ({cam1_device}) ๐ฅ")
cam1_img = st.camera_input(
label=cam1_label,
key="cam1",
help=cam1_help,
disabled=False,
label_visibility=cam1_vis
)
if cam1_img:
filename = generate_filename("cam1")
with open(filename, "wb") as f:
f.write(cam1_img.getvalue())
st.image(Image.open(filename), caption=filename, use_container_width=True)
logger.info(f"Saved snapshot from Camera 1: {filename}")
st.session_state['captured_images'].append(filename)
update_gallery()
st.info("๐จ Single shots onlyโcraft your masterpiece! ๐จ")
with tab3:
st.header("Fine-Tune Titan (CV) ๐ง (Sculpt Your Pixel Prodigy!)")
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], (MicroDiffusionBuilder, LatentDiffusionBuilder, FluxDiffusionBuilder)):
st.warning("Please build or load a CV Titan first! โ ๏ธ (No artist, no canvas!)")
else:
captured_images = get_gallery_files(["png"])
if len(captured_images) >= 2:
st.subheader("Use Case 1: Denoise Snapshots ๐")
denoising_data = [{"image": img, "text": f"Denoised {os.path.basename(img).split('-')[4]} snap"} for img in captured_images[:min(len(captured_images), 10)]]
denoising_edited = st.data_editor(pd.DataFrame(denoising_data), num_rows="dynamic", help="Craft denoising pairs! ๐")
if st.button("Fine-Tune Denoising ๐"):
images = [Image.open(row["image"]) for _, row in denoising_edited.iterrows()]
texts = [row["text"] for _, row in denoising_edited.iterrows()]
new_model_name = f"{st.session_state['cv_builder'].config.name}-denoise-{int(time.time())}"
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small")
st.session_state['cv_builder'].config = new_config
with st.status("Fine-tuning for denoising... โณ (Polishing pixels!)", expanded=True) as status:
st.session_state['cv_builder'].fine_tune_sft(images, texts)
st.session_state['cv_builder'].save_model(new_config.model_path)
status.update(label="Denoising tuned! ๐ (Pixel shine unleashed!)", state="complete")
zip_path = f"{new_config.model_path}.zip"
zip_files([new_config.model_path], zip_path)
st.markdown(get_download_link(zip_path, "application/zip", "Download Denoised Titan ๐ฆ"), unsafe_allow_html=True)
denoising_csv = f"denoise_dataset_{int(time.time())}.csv"
with open(denoising_csv, "w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["image", "text"])
for _, row in denoising_edited.iterrows():
writer.writerow([row["image"], row["text"]])
st.markdown(get_download_link(denoising_csv, "text/csv", "Download Denoising CSV ๐"), unsafe_allow_html=True)
st.subheader("Use Case 2: Stylize Snapshots ๐จ")
stylize_data = [{"image": img, "text": f"Neon {os.path.basename(img).split('-')[4]} style"} for img in captured_images[:min(len(captured_images), 10)]]
stylize_edited = st.data_editor(pd.DataFrame(stylize_data), num_rows="dynamic", help="Craft stylized pairs! ๐จ")
if st.button("Fine-Tune Stylization ๐"):
images = [Image.open(row["image"]) for _, row in stylize_edited.iterrows()]
texts = [row["text"] for _, row in stylize_edited.iterrows()]
new_model_name = f"{st.session_state['cv_builder'].config.name}-stylize-{int(time.time())}"
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small")
st.session_state['cv_builder'].config = new_config
with st.status("Fine-tuning for stylization... โณ (Painting pixels!)", expanded=True) as status:
st.session_state['cv_builder'].fine_tune_sft(images, texts)
st.session_state['cv_builder'].save_model(new_config.model_path)
status.update(label="Stylization tuned! ๐ (Pixel art unleashed!)", state="complete")
zip_path = f"{new_config.model_path}.zip"
zip_files([new_config.model_path], zip_path)
st.markdown(get_download_link(zip_path, "application/zip", "Download Stylized Titan ๐ฆ"), unsafe_allow_html=True)
stylize_md = f"stylize_dataset_{int(time.time())}.md"
with open(stylize_md, "w") as f:
f.write("# Stylization Dataset\n\n")
for _, row in stylize_edited.iterrows():
f.write(f"- `{row['image']}`: {row['text']}\n")
st.markdown(get_download_link(stylize_md, "text/markdown", "Download Stylization MD ๐"), unsafe_allow_html=True)
st.subheader("Use Case 3: Multi-Angle Snapshots ๐")
multiangle_data = [{"image": img, "text": f"View from {os.path.basename(img).split('-')[4]}"} for img in captured_images[:min(len(captured_images), 10)]]
multiangle_edited = st.data_editor(pd.DataFrame(multiangle_data), num_rows="dynamic", help="Craft multi-angle pairs! ๐")
if st.button("Fine-Tune Multi-Angle ๐"):
images = [Image.open(row["image"]) for _, row in multiangle_edited.iterrows()]
texts = [row["text"] for _, row in multiangle_edited.iterrows()]
new_model_name = f"{st.session_state['cv_builder'].config.name}-multiangle-{int(time.time())}"
new_config = DiffusionConfig(name=new_model_name, base_model=st.session_state['cv_builder'].config.base_model, size="small")
st.session_state['cv_builder'].config = new_config
with st.status("Fine-tuning for multi-angle... โณ (Spinning pixels!)", expanded=True) as status:
st.session_state['cv_builder'].fine_tune_sft(images, texts)
st.session_state['cv_builder'].save_model(new_config.model_path)
status.update(label="Multi-angle tuned! ๐ (Pixel views unleashed!)", state="complete")
zip_path = f"{new_config.model_path}.zip"
zip_files([new_config.model_path], zip_path)
st.markdown(get_download_link(zip_path, "application/zip", "Download Multi-Angle Titan ๐ฆ"), unsafe_allow_html=True)
multiangle_csv = f"multiangle_dataset_{int(time.time())}.csv"
with open(multiangle_csv, "w", newline="") as f:
writer = csv.writer(f)
writer.writerow(["image", "text"])
for _, row in multiangle_edited.iterrows():
writer.writerow([row["image"], row["text"]])
st.markdown(get_download_link(multiangle_csv, "text/csv", "Download Multi-Angle CSV ๐"), unsafe_allow_html=True)
with tab4:
st.header("Test Titan (CV) ๐งช (Unleash Your Pixel Power!)")
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], (MicroDiffusionBuilder, LatentDiffusionBuilder, FluxDiffusionBuilder)):
st.warning("Please build or load a CV Titan first! โ ๏ธ (No artist, no masterpiece!)")
else:
st.subheader("Test Your Titan ๐จ")
test_prompt = st.text_area("Prompt ๐ค", "Neon glow from cam0", help="Dream up a wild imageโyour Titanโs ready to paint! ๐๏ธ")
if st.button("Generate โถ๏ธ"):
with st.spinner("Crafting your masterpiece... โณ (Titanโs mixing pixels!)"):
image = st.session_state['cv_builder'].generate(test_prompt)
st.image(image, caption=f"Generated: {test_prompt}", use_container_width=True)
with tab5:
st.header("Agentic RAG Party (CV) ๐ (Pixel Party Extravaganza!)")
st.write("Generate superhero party vibes from your tuned Titan! ๐")
if not st.session_state['cv_loaded'] or not isinstance(st.session_state['cv_builder'], (MicroDiffusionBuilder, LatentDiffusionBuilder, FluxDiffusionBuilder)):
st.warning("Please build or load a CV Titan first! โ ๏ธ (No artist, no party!)")
else:
if st.button("Run RAG Demo ๐"):
with st.spinner("Loading your pixel party titan... โณ (Titanโs grabbing its brush!)"):
class CVPartyAgent:
def __init__(self, pipeline):
self.pipeline = pipeline
def generate(self, prompt: str) -> Image.Image:
return self.pipeline(prompt, num_inference_steps=50).images[0]
def plan_party(self):
prompts = [
"Gold-plated Batman statue from cam0",
"VR superhero battle scene from cam1",
"Neon-lit Avengers tower from cam2"
]
data = [{"Theme": f"Scene {i+1}", "Image Idea": prompt} for i, prompt in enumerate(prompts)]
return pd.DataFrame(data)
agent = CVPartyAgent(st.session_state['cv_builder'].pipeline)
st.write("Party agent ready! ๐จ (Time to paint an epic bash!)")
with st.spinner("Crafting superhero party visuals... โณ (Pixels assemble!)"):
try:
plan_df = agent.plan_party()
st.dataframe(plan_df)
for _, row in plan_df.iterrows():
image = agent.generate(row["Image Idea"])
st.image(image, caption=f"{row['Theme']} - {row['Image Idea']}", use_container_width=True)
except Exception as e:
st.error(f"Party crashed: {str(e)} ๐ฅ (Pixel oopsie!)")
logger.error(f"RAG demo failed: {str(e)}")
st.sidebar.subheader("Action Logs ๐")
log_container = st.sidebar.empty()
with log_container:
for record in log_records:
st.write(f"{record.asctime} - {record.levelname} - {record.message}")
update_gallery() |