Spaces:
Running
Running
File size: 6,223 Bytes
59e84d3 5fa7137 59e84d3 5fa7137 59e84d3 5fa7137 f873e60 1084118 f873e60 7808671 f873e60 5fa7137 59e84d3 1084118 59e84d3 1084118 371dba5 1084118 59e84d3 5fa7137 371dba5 95de190 5fa7137 f873e60 5fa7137 db05673 7808671 db05673 7808671 f873e60 7808671 371dba5 f873e60 7808671 5fa7137 95de190 47bd397 5fa7137 f873e60 95de190 1084118 f873e60 7808671 f873e60 7808671 f873e60 7808671 f873e60 7808671 f873e60 5fa7137 f873e60 95de190 f873e60 7808671 95de190 7808671 f873e60 95de190 f873e60 5fa7137 1084118 47bd397 5fa7137 1084118 5fa7137 f873e60 5fa7137 f873e60 47bd397 5fa7137 1084118 5fa7137 47bd397 5fa7137 1084118 5fa7137 f873e60 5fa7137 47bd397 5fa7137 1084118 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import gradio as gr
import torch
from transformers import pipeline
import os
# --- App Configuration ---
TITLE = "✍️ AI Story Outliner"
DESCRIPTION = """
Enter a prompt and get 10 unique story outlines from a CPU-friendly AI model.
The app uses **Tencent's Hunyuan-1.8B** to generate creative outlines formatted in Markdown.
**How it works:**
1. Enter your story idea.
2. The AI will generate 10 different story outlines.
3. Each outline has a dramatic beginning and is concise, like a song.
"""
# --- Example Prompts for Storytelling ---
examples = [
["The old lighthouse keeper stared into the storm. He'd seen many tempests, but this one was different. This one had eyes..."],
["In a city powered by dreams, a young inventor creates a machine that can record them. His first recording reveals a nightmare that doesn't belong to him."],
["The knight adjusted his helmet, the dragon's roar echoing in the valley. He was ready for the fight, but for what the dragon said when it finally spoke."],
["She found the old leather-bound journal in her grandfather's attic. The first entry read: 'To relieve stress, I walk in the woods. But today, the woods walked with me.'"],
["The meditation app promised to help her 'delete unhelpful thoughts.' She tapped the button, and to her horror, the memory of her own name began to fade..."]
]
# --- Model Initialization ---
# This section loads a smaller, CPU-friendly model.
# It will automatically use the HF_TOKEN secret when deployed on Hugging Face Spaces.
generator = None
model_error = None
try:
print("Initializing model... This may take a moment.")
# Explicitly load the token from environment variables (for HF Spaces secrets).
# This makes the authentication more robust, overriding any bad default credentials.
hf_token = os.environ.get("HF_TOKEN")
# Add a check to see if the token was loaded correctly.
if hf_token:
print("✅ HF_TOKEN secret found.")
else:
print("⚠️ HF_TOKEN secret not found. Please ensure it is set in your Hugging Face Space settings.")
# Raise an error to stop the app from proceeding without a token.
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN secret.")
# Using a smaller model from the user's list.
# Passing the token explicitly to ensure correct authentication.
generator = pipeline(
"text-generation",
model="tencent/Hunyuan-1.8B-Instruct",
torch_dtype=torch.bfloat16, # Use bfloat16 for better performance if available
device_map="auto", # Will use GPU if available, otherwise CPU
token=hf_token
)
print("✅ Tencent/Hunyuan-1.8B-Instruct model loaded successfully!")
except Exception as e:
model_error = e
print(f"--- 🚨 Error loading model ---")
print(f"Error: {model_error}")
# --- App Logic ---
def generate_stories(prompt: str) -> list[str]:
"""
Generates 10 story outlines from the loaded model based on the user's prompt.
"""
# If the model failed to load, display the error in all output boxes.
if model_error:
error_message = f"**Model failed to load.**\n\nPlease check the console logs for details.\n\n**Error:**\n`{str(model_error)}`"
return [error_message] * 10
if not prompt:
# Return a list of 10 empty strings to clear the outputs
return [""] * 10
# This prompt format is specific to the Hunyuan model.
system_instruction = "You are an expert storyteller. Your task is to take a user's prompt and write a short story as a Markdown outline. The story must have a dramatic arc and be the length of a song. Use emojis to highlight the story sections."
story_prompt = f"<|im_start|>system\n{system_instruction}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
# Parameters for the pipeline to generate 10 diverse results.
params = {
"max_new_tokens": 250,
"num_return_sequences": 10,
"do_sample": True,
"temperature": 0.8,
"top_p": 0.95,
"pad_token_id": generator.tokenizer.eos_token_id # Suppress warning
}
# Generate 10 different story variations
outputs = generator(story_prompt, **params)
# Extract the generated text and clean it up.
stories = []
for out in outputs:
# Remove the prompt part from the full generated text
full_text = out['generated_text']
assistant_response = full_text.split("<|im_start|>assistant\n")[-1]
stories.append(assistant_response)
# Ensure we return exactly 10 stories, padding if necessary.
while len(stories) < 10:
stories.append("Failed to generate a story for this slot.")
return stories
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 95% !important;}") as demo:
gr.Markdown(f"<h1 style='text-align: center;'>{TITLE}</h1>")
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column(scale=1):
input_area = gr.TextArea(
lines=5,
label="Your Story Prompt 👇",
placeholder="e.g., 'The last dragon on Earth lived not in a cave, but in a library...'"
)
generate_button = gr.Button("Generate 10 Outlines ✨", variant="primary")
gr.Markdown("---")
gr.Markdown("## 📖 Your 10 Story Outlines")
# Create 10 markdown components to display the stories in two columns
story_outputs = []
with gr.Row():
with gr.Column():
for i in range(5):
md = gr.Markdown(label=f"Story Outline {i + 1}")
story_outputs.append(md)
with gr.Column():
for i in range(5, 10):
md = gr.Markdown(label=f"Story Outline {i + 1}")
story_outputs.append(md)
gr.Examples(
examples=examples,
inputs=input_area,
label="Example Story Starters (Click to use)"
)
generate_button.click(
fn=generate_stories,
inputs=input_area,
outputs=story_outputs,
api_name="generate"
)
if __name__ == "__main__":
demo.launch()
|