Spaces:
Sleeping
Sleeping
# 🚀 Main App - TalkingAIResearcher with Chat, Voice, Media, ArXiv, and More | |
import streamlit as st | |
import asyncio | |
import websockets | |
import uuid | |
import argparse | |
import os | |
import random | |
import time | |
import hashlib | |
from PIL import Image | |
import glob | |
import base64 | |
import io | |
import streamlit.components.v1 as components | |
import edge_tts | |
from audio_recorder_streamlit import audio_recorder | |
import nest_asyncio | |
import re | |
import pytz | |
import shutil | |
import anthropic | |
import openai | |
from PyPDF2 import PdfReader | |
import threading | |
import json | |
import zipfile | |
from gradio_client import Client | |
from dotenv import load_dotenv | |
from streamlit_marquee import streamlit_marquee | |
from datetime import datetime | |
from collections import defaultdict, Counter | |
import pandas as pd | |
# 🛠️ Patch asyncio for nesting glory | |
nest_asyncio.apply() | |
# 🎨 Page Config | |
st.set_page_config( | |
page_title="🚲TalkingAIResearcher🏆", | |
page_icon="🚲🏆", | |
layout="wide", | |
initial_sidebar_state="auto" | |
) | |
# 🌟 Static Config | |
icons = '🤖🧠🔬📝' | |
START_ROOM = "Sector 🌌" | |
FUN_USERNAMES = { | |
"CosmicJester 🌌": "en-US-AriaNeural", | |
"PixelPanda 🐼": "en-US-JennyNeural", | |
"QuantumQuack 🦆": "en-GB-SoniaNeural", | |
"StellarSquirrel 🐿️": "en-AU-NatashaNeural", | |
"GizmoGuru ⚙️": "en-CA-ClaraNeural", | |
"NebulaNinja 🌠": "en-US-GuyNeural", | |
"ByteBuster 💾": "en-GB-RyanNeural", | |
"GalacticGopher 🌍": "en-AU-WilliamNeural", | |
"RocketRaccoon 🚀": "en-CA-LiamNeural", | |
"EchoElf 🧝": "en-US-AnaNeural", | |
} | |
EDGE_TTS_VOICES = list(set(FUN_USERNAMES.values())) # 🎙️ Voice options | |
FILE_EMOJIS = {"md": "📝", "mp3": "🎵", "wav": "🔊"} | |
# 📁 Directories | |
for d in ["chat_logs", "vote_logs", "audio_logs", "history_logs", "media_files", "audio_cache"]: | |
os.makedirs(d, exist_ok=True) | |
CHAT_FILE = "chat_logs/global_chat.md" | |
HISTORY_FILE = "history_logs/chat_history.md" | |
MEDIA_DIR = "media_files" | |
AUDIO_CACHE_DIR = "audio_cache" | |
# 🔑 API Keys | |
load_dotenv() | |
anthropic_key = os.getenv('ANTHROPIC_API_KEY', st.secrets.get('ANTHROPIC_API_KEY', "")) | |
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', "")) | |
openai_client = openai.OpenAI(api_key=openai_api_key) | |
# 🕒 Timestamp Helper | |
def format_timestamp_prefix(username=""): | |
central = pytz.timezone('US/Central') | |
now = datetime.now(central) | |
return f"{now.strftime('%Y%m%d_%H%M%S')}-by-{username}" | |
# 📈 Performance Timer | |
class PerformanceTimer: | |
def __init__(self, name): self.name, self.start = name, None | |
def __enter__(self): | |
self.start = time.time() | |
return self | |
def __exit__(self, *args): | |
duration = time.time() - self.start | |
st.session_state['operation_timings'][self.name] = duration | |
st.session_state['performance_metrics'][self.name].append(duration) | |
# 🎛️ Session State Init | |
def init_session_state(): | |
defaults = { | |
'server_running': False, 'server_task': None, 'active_connections': {}, | |
'media_notifications': [], 'last_chat_update': 0, 'displayed_chat_lines': [], | |
'message_text': "", 'audio_cache': {}, 'pasted_image_data': None, | |
'quote_line': None, 'refresh_rate': 5, 'base64_cache': {}, | |
'transcript_history': [], 'last_transcript': "", 'image_hashes': set(), | |
'tts_voice': "en-US-AriaNeural", 'chat_history': [], 'marquee_settings': { | |
"background": "#1E1E1E", "color": "#FFFFFF", "font-size": "14px", | |
"animationDuration": "20s", "width": "100%", "lineHeight": "35px" | |
}, 'operation_timings': {}, 'performance_metrics': defaultdict(list), | |
'enable_audio': True, 'download_link_cache': {}, 'username': None, | |
'autosend': True, 'autosearch': True, 'last_message': "", 'last_query': "" | |
} | |
for k, v in defaults.items(): | |
if k not in st.session_state: st.session_state[k] = v | |
# 🖌️ Marquee Helpers | |
def update_marquee_settings_ui(): | |
# 🎨 Sidebar marquee controls | |
st.sidebar.markdown("### 🎯 Marquee Settings") | |
cols = st.sidebar.columns(2) | |
with cols[0]: | |
st.session_state['marquee_settings']['background'] = st.color_picker("🎨 Background", "#1E1E1E") | |
st.session_state['marquee_settings']['color'] = st.color_picker("✍️ Text", "#FFFFFF") | |
with cols[1]: | |
st.session_state['marquee_settings']['font-size'] = f"{st.slider('📏 Size', 10, 24, 14)}px" | |
st.session_state['marquee_settings']['animationDuration'] = f"{st.slider('⏱️ Speed', 1, 20, 20)}s" | |
def display_marquee(text, settings, key_suffix=""): | |
# 🌈 Show marquee with truncation | |
truncated = text[:280] + "..." if len(text) > 280 else text | |
streamlit_marquee(content=truncated, **settings, key=f"marquee_{key_suffix}") | |
st.write("") | |
# 📝 Text & File Helpers | |
def clean_text_for_tts(text): return re.sub(r'[#*!\[\]]+', '', ' '.join(text.split()))[:200] or "No text" | |
def clean_text_for_filename(text): return '_'.join(re.sub(r'[^\w\s-]', '', text.lower()).split())[:200] | |
def get_high_info_terms(text, top_n=10): | |
stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with'} | |
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) | |
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] | |
filtered = [t for t in words + bi_grams if t not in stop_words and len(t.split()) <= 2] | |
return [t for t, _ in Counter(filtered).most_common(top_n)] | |
def generate_filename(prompt, response, file_type="md"): | |
# 📁 Smart filename with info terms | |
prefix = format_timestamp_prefix() | |
terms = get_high_info_terms(prompt + " " + response, 5) | |
snippet = clean_text_for_filename(prompt[:40] + " " + response[:40]) | |
wct, sw = len(prompt.split()), len(response.split()) | |
dur = round((wct + sw) / 2.5) | |
base = '_'.join(list(dict.fromkeys(terms + [snippet])))[:200 - len(prefix) - len(f"_wct{wct}_sw{sw}_dur{dur}.{file_type}")] | |
return f"{prefix}{base}_wct{wct}_sw{sw}_dur{dur}.{file_type}" | |
def create_file(prompt, response, file_type="md"): | |
# 📝 Save file with Q&A | |
filename = generate_filename(prompt, response, file_type) | |
with open(filename, 'w', encoding='utf-8') as f: f.write(prompt + "\n\n" + response) | |
return filename | |
def get_download_link(file, file_type="mp3"): | |
# ⬇️ Cached download link | |
cache_key = f"dl_{file}" | |
if cache_key not in st.session_state['download_link_cache']: | |
with open(file, "rb") as f: | |
b64 = base64.b64encode(f.read()).decode() | |
st.session_state['download_link_cache'][cache_key] = f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">{FILE_EMOJIS.get(file_type, "Download")} Download {os.path.basename(file)}</a>' | |
return st.session_state['download_link_cache'][cache_key] | |
# 🎶 Audio Processing | |
async def async_edge_tts_generate(text, voice, rate=0, pitch=0, file_format="mp3"): | |
# 🎵 Async TTS with caching - Fixed KeyError! | |
cache_key = f"{text[:100]}_{voice}_{rate}_{pitch}_{file_format}" | |
if cache_key in st.session_state['audio_cache']: return st.session_state['audio_cache'][cache_key], 0 | |
start_time = time.time() | |
text = clean_text_for_tts(text) | |
if not text: return None, 0 | |
filename = f"audio_{format_timestamp_prefix()}_{random.randint(1000, 9999)}.{file_format}" | |
communicate = edge_tts.Communicate(text, voice, rate=f"{rate:+d}%", pitch=f"{pitch:+d}Hz") | |
await communicate.save(filename) | |
st.session_state['audio_cache'][cache_key] = filename | |
return filename, time.time() - start_time # No reliance on operation_timings | |
def play_and_download_audio(file_path): | |
# 🔊 Play + download | |
if file_path and os.path.exists(file_path): | |
st.audio(file_path) | |
st.markdown(get_download_link(file_path), unsafe_allow_html=True) | |
async def save_chat_entry(username, message, is_markdown=False): | |
# 💬 Save chat with multicast broadcast | |
central = pytz.timezone('US/Central') | |
timestamp = datetime.now(central).strftime("%Y-%m-%d %H:%M:%S") | |
entry = f"[{timestamp}] {username}: {message}" if not is_markdown else f"[{timestamp}] {username}:\n```markdown\n{message}\n```" | |
with open(CHAT_FILE, 'a') as f: f.write(f"{entry}\n") | |
voice = FUN_USERNAMES.get(username, "en-US-AriaNeural") | |
audio_file, _ = await async_edge_tts_generate(clean_text_for_tts(message), voice) | |
if audio_file: | |
with open(HISTORY_FILE, 'a') as f: f.write(f"[{timestamp}] {username}: Audio - {audio_file}\n") | |
await broadcast_message(f"{username}|{message}", "chat") | |
st.session_state.last_chat_update = time.time() | |
st.session_state.chat_history.append(entry) # Append to history | |
return audio_file | |
async def load_chat(): | |
# 📜 Load chat history - Numbered like old version | |
if not os.path.exists(CHAT_FILE): | |
with open(CHAT_FILE, 'a') as f: f.write(f"# {START_ROOM} Chat\n\nWelcome to the cosmic hub! 🎤\n") | |
with open(CHAT_FILE, 'r') as f: | |
content = f.read().strip() | |
lines = content.split('\n') | |
numbered_content = "\n".join(f"{i+1}. {line}" for i, line in enumerate(lines) if line.strip()) | |
return numbered_content | |
# 🌐 WebSocket Handling | |
async def websocket_handler(websocket, path): | |
# 🤝 Handle WebSocket clients - Fixed multicast | |
client_id = str(uuid.uuid4()) | |
room_id = "chat" | |
if room_id not in st.session_state.active_connections: | |
st.session_state.active_connections[room_id] = {} | |
st.session_state.active_connections[room_id][client_id] = websocket | |
username = st.session_state.get('username', random.choice(list(FUN_USERNAMES.keys()))) | |
chat_content = await load_chat() | |
if not any(f"Client-{client_id}" in line for line in chat_content.split('\n')): | |
await save_chat_entry("System 🌟", f"{username} has joined {START_ROOM}!") | |
try: | |
async for message in websocket: | |
if '|' in message: | |
username, content = message.split('|', 1) | |
await save_chat_entry(username, content) | |
else: | |
await websocket.send("ERROR|Message format: username|content") | |
except websockets.ConnectionClosed: | |
await save_chat_entry("System 🌟", f"{username} has left {START_ROOM}!") | |
finally: | |
if room_id in st.session_state.active_connections and client_id in st.session_state.active_connections[room_id]: | |
del st.session_state.active_connections[room_id][client_id] | |
async def broadcast_message(message, room_id): | |
# 📢 Broadcast to all clients - Fixed! | |
if room_id in st.session_state.active_connections: | |
disconnected = [] | |
for client_id, ws in st.session_state.active_connections[room_id].items(): | |
try: | |
await ws.send(message) | |
except websockets.ConnectionClosed: | |
disconnected.append(client_id) | |
for client_id in disconnected: | |
if client_id in st.session_state.active_connections[room_id]: | |
del st.session_state.active_connections[room_id][client_id] | |
async def run_websocket_server(): | |
# 🖥️ Start WebSocket server | |
if not st.session_state.server_running: | |
server = await websockets.serve(websocket_handler, '0.0.0.0', 8765) | |
st.session_state.server_running = True | |
await server.wait_closed() | |
# 📚 PDF to Audio | |
class AudioProcessor: | |
def __init__(self): | |
self.cache_dir = AUDIO_CACHE_DIR | |
os.makedirs(self.cache_dir, exist_ok=True) | |
self.metadata = json.load(open(f"{self.cache_dir}/metadata.json")) if os.path.exists(f"{self.cache_dir}/metadata.json") else {} | |
def _save_metadata(self): | |
with open(f"{self.cache_dir}/metadata.json", 'w') as f: json.dump(self.metadata, f) | |
async def create_audio(self, text, voice='en-US-AriaNeural'): | |
# 🎶 Generate cached audio | |
cache_key = hashlib.md5(f"{text}:{voice}".encode()).hexdigest() | |
cache_path = f"{self.cache_dir}/{cache_key}.mp3" | |
if cache_key in self.metadata and os.path.exists(cache_path): | |
return open(cache_path, 'rb').read() | |
text = clean_text_for_tts(text) | |
if not text: return None | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(cache_path) | |
self.metadata[cache_key] = {'timestamp': datetime.now().isoformat(), 'text_length': len(text), 'voice': voice} | |
self._save_metadata() | |
return open(cache_path, 'rb').read() | |
def process_pdf(pdf_file, max_pages, voice, audio_processor): | |
# 📄 Convert PDF to audio | |
reader = PdfReader(pdf_file) | |
total_pages = min(len(reader.pages), max_pages) | |
texts, audios = [], {} | |
async def process_page(i, text): audios[i] = await audio_processor.create_audio(text, voice) | |
for i in range(total_pages): | |
text = reader.pages[i].extract_text() | |
texts.append(text) | |
threading.Thread(target=lambda: asyncio.run(process_page(i, text))).start() | |
return texts, audios, total_pages | |
# 🔍 ArXiv & AI Lookup | |
def parse_arxiv_refs(ref_text): | |
# 📜 Parse ArXiv refs into dicts | |
if not ref_text: return [] | |
papers = [] | |
current = {} | |
for line in ref_text.split('\n'): | |
if line.count('|') == 2: | |
if current: papers.append(current) | |
date, title, *_ = line.strip('* ').split('|') | |
url = re.search(r'(https://arxiv.org/\S+)', line).group(1) if re.search(r'(https://arxiv.org/\S+)', line) else f"paper_{len(papers)}" | |
current = {'date': date, 'title': title, 'url': url, 'authors': '', 'summary': '', 'full_audio': None, 'download_base64': ''} | |
elif current: | |
if not current['authors']: current['authors'] = line.strip('* ') | |
else: current['summary'] += ' ' + line.strip() if current['summary'] else line.strip() | |
if current: papers.append(current) | |
return papers[:20] | |
def generate_5min_feature_markdown(paper): | |
# ✨ 5-min research paper feature | |
title, summary, authors, date, url = paper['title'], paper['summary'], paper['authors'], paper['date'], paper['url'] | |
pdf_url = url.replace("abs", "pdf") + (".pdf" if not url.endswith(".pdf") else "") | |
wct, sw = len(title.split()), len(summary.split()) | |
terms = get_high_info_terms(summary, 15) | |
rouge = round((len(terms) / max(sw, 1)) * 100, 2) | |
mermaid = "```mermaid\nflowchart TD\n" + "\n".join(f' T{i+1}["{t}"] --> T{i+2}["{terms[i+1]}"]' for i in range(len(terms)-1)) + "\n```" | |
return f""" | |
## 📄 {title} | |
**Authors:** {authors} | **Date:** {date} | **Words:** Title: {wct}, Summary: {sw} | |
**Links:** [Abstract]({url}) | [PDF]({pdf_url}) | |
**Terms:** {', '.join(terms)} | **ROUGE:** {rouge}% | |
### 🎤 TTF Read Aloud | |
- **Title:** {title} | **Terms:** {', '.join(terms)} | **ROUGE:** {rouge}% | |
#### Concepts Graph | |
{mermaid} | |
--- | |
""" | |
def create_detailed_paper_md(papers): return "# Detailed Summary\n" + "\n".join(generate_5min_feature_markdown(p) for p in papers) | |
async def create_paper_audio_files(papers, query): | |
# 🎧 Generate paper audio | |
for p in papers: | |
audio_text = clean_text_for_tts(f"{p['title']} by {p['authors']}. {p['summary']}") | |
p['full_audio'], _ = await async_edge_tts_generate(audio_text, st.session_state['tts_voice']) | |
if p['full_audio']: p['download_base64'] = get_download_link(p['full_audio']) | |
async def perform_ai_lookup(q, useArxiv=True, useArxivAudio=False): | |
# 🔮 AI-powered research | |
client = anthropic.Anthropic(api_key=anthropic_key) | |
response = client.messages.create(model="claude-3-sonnet-20240229", max_tokens=1000, messages=[{"role": "user", "content": q}]) | |
result = response.content[0].text | |
st.markdown("### Claude's Reply 🧠\n" + result) | |
md_file = create_file(q, result) | |
audio_file, _ = await async_edge_tts_generate(result, st.session_state['tts_voice']) | |
play_and_download_audio(audio_file) | |
if useArxiv: | |
q += result | |
gradio_client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
refs = gradio_client.predict(q, 10, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0] | |
result = f"🔎 {q}\n\n{refs}" | |
md_file, audio_file = create_file(q, result), (await async_edge_tts_generate(result, st.session_state['tts_voice']))[0] | |
play_and_download_audio(audio_file) | |
papers = parse_arxiv_refs(refs) | |
if papers and useArxivAudio: await create_paper_audio_files(papers, q) | |
return result, papers | |
return result, [] | |
# 📦 Zip Files | |
def create_zip_of_files(md_files, mp3_files, query): | |
# 📦 Zip it up | |
all_files = md_files + mp3_files | |
if not all_files: return None | |
terms = get_high_info_terms(" ".join([open(f, 'r', encoding='utf-8').read() if f.endswith('.md') else os.path.splitext(os.path.basename(f))[0].replace('_', ' ') for f in all_files] + [query]), 5) | |
zip_name = f"{format_timestamp_prefix()}_{'-'.join(terms)[:20]}.zip" | |
with zipfile.ZipFile(zip_name, 'w') as z: [z.write(f) for f in all_files] | |
return zip_name | |
# 🎮 Main Interface | |
async def async_interface(): | |
init_session_state() | |
if not st.session_state.username: | |
available = [n for n in FUN_USERNAMES if not any(f"{n} has joined" in l for l in (await load_chat()).split('\n'))] | |
st.session_state.username = random.choice(available or list(FUN_USERNAMES.keys())) | |
st.session_state.tts_voice = FUN_USERNAMES[st.session_state.username] | |
await save_chat_entry("System 🌟", f"{st.session_state.username} has joined {START_ROOM}!") | |
st.title(f"🤖🧠MMO Chat & Research for {st.session_state.username}📝🔬") | |
update_marquee_settings_ui() | |
display_marquee(f"🚀 Welcome to {START_ROOM} | 🤖 {st.session_state.username}", st.session_state['marquee_settings'], "welcome") | |
if not st.session_state.server_task: | |
st.session_state.server_task = asyncio.create_task(run_websocket_server()) | |
tab_main = st.radio("Action:", ["🎤 Chat & Voice", "📸 Media", "🔍 ArXiv", "📚 PDF to Audio"], horizontal=True) | |
useArxiv, useArxivAudio = st.checkbox("Search ArXiv", True), st.checkbox("ArXiv Audio", False) | |
st.session_state.autosend = st.checkbox("Autosend Chat", value=True) | |
st.session_state.autosearch = st.checkbox("Autosearch ArXiv", value=True) | |
# 🎤 Chat & Voice | |
if tab_main == "🎤 Chat & Voice": | |
st.subheader(f"{START_ROOM} Chat 💬") | |
chat_content = await load_chat() | |
chat_container = st.container() | |
with chat_container: | |
st.markdown(chat_content) # Display numbered chat history | |
message = st.text_input(f"Message as {st.session_state.username}", key="message_input") | |
if message and message != st.session_state.last_message: | |
st.session_state.last_message = message | |
if st.session_state.autosend or st.button("Send 🚀"): | |
await save_chat_entry(st.session_state.username, message, True) | |
st.rerun() | |
st.subheader("🎤 Speech-to-Chat") | |
speech_component = components.declare_component("speech_component", path="mycomponent") | |
transcript_data = speech_component(default_value=st.session_state.get('last_transcript', '')) | |
if transcript_data and 'value' in transcript_data: | |
transcript = transcript_data['value'].strip() | |
st.write(f"🎙️ You said: {transcript}") | |
if transcript and transcript != st.session_state.last_transcript: | |
st.session_state.last_transcript = transcript | |
if st.session_state.autosend: | |
await save_chat_entry(st.session_state.username, transcript, True) | |
st.rerun() | |
elif st.button("Send to Chat"): | |
await save_chat_entry(st.session_state.username, transcript, True) | |
st.rerun() | |
# 📸 Media | |
elif tab_main == "📸 Media": | |
st.header("📸 Media Gallery") | |
tabs = st.tabs(["🎵 Audio", "🖼 Images", "🎥 Video"]) | |
with tabs[0]: | |
for a in glob.glob(f"{MEDIA_DIR}/*.mp3"): | |
with st.expander(os.path.basename(a)): play_and_download_audio(a) | |
with tabs[1]: | |
imgs = glob.glob(f"{MEDIA_DIR}/*.png") + glob.glob(f"{MEDIA_DIR}/*.jpg") | |
if imgs: | |
cols = st.columns(3) | |
for i, f in enumerate(imgs): cols[i % 3].image(f, use_container_width=True) | |
with tabs[2]: | |
for v in glob.glob(f"{MEDIA_DIR}/*.mp4"): | |
with st.expander(os.path.basename(v)): st.video(v) | |
uploaded_file = st.file_uploader("Upload Media", type=['png', 'jpg', 'mp4', 'mp3']) | |
if uploaded_file: | |
filename = f"{format_timestamp_prefix(st.session_state.username)}-{hashlib.md5(uploaded_file.getbuffer()).hexdigest()[:8]}.{uploaded_file.name.split('.')[-1]}" | |
with open(f"{MEDIA_DIR}/{filename}", 'wb') as f: f.write(uploaded_file.getbuffer()) | |
await save_chat_entry(st.session_state.username, f"Uploaded: {filename}") | |
st.rerun() | |
# 🔍 ArXiv | |
elif tab_main == "🔍 ArXiv": | |
q = st.text_input("🔍 Query:", key="arxiv_query") | |
if q and q != st.session_state.last_query: | |
st.session_state.last_query = q | |
if st.session_state.autosearch or st.button("🔍 Run"): | |
result, papers = await perform_ai_lookup(q, useArxiv, useArxivAudio) | |
for i, p in enumerate(papers, 1): | |
with st.expander(f"{i}. 📄 {p['title']}"): | |
st.markdown(f"**{p['date']} | {p['title']}** — [Link]({p['url']})") | |
st.markdown(generate_5min_feature_markdown(p)) | |
if p.get('full_audio'): play_and_download_audio(p['full_audio']) | |
# 📚 PDF to Audio | |
elif tab_main == "📚 PDF to Audio": | |
audio_processor = AudioProcessor() | |
pdf_file = st.file_uploader("Choose PDF", "pdf") | |
max_pages = st.slider('Pages', 1, 100, 10) | |
if pdf_file: | |
with st.spinner('Processing...'): | |
texts, audios, total = process_pdf(pdf_file, max_pages, st.session_state['tts_voice'], audio_processor) | |
for i, text in enumerate(texts): | |
with st.expander(f"Page {i+1}"): | |
st.markdown(text) | |
while i not in audios: time.sleep(0.1) | |
if audios[i]: | |
st.audio(audios[i], format='audio/mp3') | |
st.markdown(get_download_link(io.BytesIO(audios[i]), "mp3"), unsafe_allow_html=True) | |
# 🗂️ Sidebar | |
st.sidebar.subheader("Voice Settings") | |
new_username = st.sidebar.selectbox("Change Name/Voice", list(FUN_USERNAMES.keys()), index=list(FUN_USERNAMES.keys()).index(st.session_state.username)) | |
if new_username != st.session_state.username: | |
await save_chat_entry("System 🌟", f"{st.session_state.username} changed to {new_username}") | |
st.session_state.username, st.session_state.tts_voice = new_username, FUN_USERNAMES[new_username] | |
st.rerun() | |
md_files, mp3_files = glob.glob("*.md"), glob.glob("*.mp3") | |
st.sidebar.markdown("### 📂 File History") | |
for f in sorted(md_files + mp3_files, key=os.path.getmtime, reverse=True)[:10]: | |
st.sidebar.write(f"{FILE_EMOJIS.get(f.split('.')[-1], '📄')} {os.path.basename(f)}") | |
if st.sidebar.button("⬇️ Zip All"): | |
zip_name = create_zip_of_files(md_files, mp3_files, "latest_query") | |
if zip_name: st.sidebar.markdown(get_download_link(zip_name, "zip"), unsafe_allow_html=True) | |
def main(): | |
# 🎉 Kick it off | |
asyncio.run(async_interface()) | |
if __name__ == "__main__": | |
main() |