File size: 7,641 Bytes
e7eeb32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import streamlit as st
import base64
import os
from PyPDF2 import PdfReader
import threading
import time
import hashlib
from datetime import datetime
import json
import asyncio
import edge_tts

# Patch asyncio for nested event loops
import nest_asyncio
nest_asyncio.apply()

# Available English voices for Edge TTS
EDGE_TTS_VOICES = [
    "en-US-AriaNeural",
    "en-US-GuyNeural",
    "en-US-JennyNeural",
    "en-GB-SoniaNeural",
    "en-GB-RyanNeural",
    "en-AU-NatashaNeural",
    "en-AU-WilliamNeural",
    "en-CA-ClaraNeural",
    "en-CA-LiamNeural"
]

# Initialize session state for voice selection
if 'tts_voice' not in st.session_state:
    st.session_state['tts_voice'] = EDGE_TTS_VOICES[0]

class AudioProcessor:
    def __init__(self):
        self.cache_dir = "audio_cache"
        os.makedirs(self.cache_dir, exist_ok=True)
        self.metadata = self._load_metadata()

    def _load_metadata(self):
        metadata_file = os.path.join(self.cache_dir, "metadata.json")
        return json.load(open(metadata_file)) if os.path.exists(metadata_file) else {}

    def _save_metadata(self):
        metadata_file = os.path.join(self.cache_dir, "metadata.json")
        with open(metadata_file, 'w') as f:
            json.dump(self.metadata, f)

    async def create_audio(self, text, voice='en-US-AriaNeural'):
        cache_key = hashlib.md5(f"{text}:{voice}".encode()).hexdigest()
        cache_path = os.path.join(self.cache_dir, f"{cache_key}.mp3")

        if cache_key in self.metadata and os.path.exists(cache_path):
            return open(cache_path, 'rb').read()

        # Clean text for speech
        text = text.replace("\n", " ").replace("</s>", " ").strip()
        if not text:
            return None

        # Generate audio with edge_tts
        communicate = edge_tts.Communicate(text, voice)
        await communicate.save(cache_path)

        # Update metadata
        self.metadata[cache_key] = {
            'timestamp': datetime.now().isoformat(),
            'text_length': len(text),
            'voice': voice
        }
        self._save_metadata()

        return open(cache_path, 'rb').read()

def get_download_link(bin_data, filename, size_mb=None):
    b64 = base64.b64encode(bin_data).decode()
    size_str = f"({size_mb:.1f} MB)" if size_mb else ""
    return f'''
        <div class="download-container">
            <a href="data:audio/mpeg;base64,{b64}" 
               download="{filename}" class="download-link">πŸ“₯ {filename}</a>
            <div class="file-info">{size_str}</div>
        </div>
    '''

def process_pdf(pdf_file, max_pages, voice, audio_processor):
    reader = PdfReader(pdf_file)
    total_pages = min(len(reader.pages), max_pages)
    texts, audios = [], {}

    async def process_page(i, text):
        audio_data = await audio_processor.create_audio(text, voice)
        audios[i] = audio_data

    # Extract text and start audio processing
    for i in range(total_pages):
        text = reader.pages[i].extract_text()
        texts.append(text)
        # Process audio in background
        threading.Thread(
            target=lambda: asyncio.run(process_page(i, text))
        ).start()

    return texts, audios, total_pages

def main():
    st.set_page_config(page_title="πŸ“š PDF to Audio 🎧", page_icon="πŸŽ‰", layout="wide")

    # Apply styling
    st.markdown("""
        <style>
        .download-link {
            color: #1E90FF;
            text-decoration: none;
            padding: 8px 12px;
            margin: 5px;
            border: 1px solid #1E90FF;
            border-radius: 5px;
            display: inline-block;
            transition: all 0.3s ease;
        }
        .download-link:hover {
            background-color: #1E90FF;
            color: white;
        }
        .file-info {
            font-size: 0.8em;
            color: gray;
            margin-top: 4px;
        }
        </style>
    """, unsafe_allow_html=True)

    # Initialize processor
    audio_processor = AudioProcessor()

    # Sidebar settings
    st.sidebar.title("πŸ“₯ Downloads & Settings")
    
    # Voice selection UI from second app
    st.sidebar.markdown("### 🎀 Voice Settings")
    selected_voice = st.sidebar.selectbox(
        "πŸ‘„ Select TTS Voice:",
        options=EDGE_TTS_VOICES,
        index=EDGE_TTS_VOICES.index(st.session_state['tts_voice'])
    )
    st.sidebar.markdown("""
    # πŸŽ™οΈ Voice Character Agent Selector 🎭
    *Female Voices*:
    - 🌸 **Aria** – Elegant, creative storytelling  
    - 🎢 **Jenny** – Friendly, conversational  
    - 🌺 **Sonia** – Bold, confident  
    - 🌌 **Natasha** – Sophisticated, mysterious  
    - 🌷 **Clara** – Cheerful, empathetic  

    *Male Voices*:
    - 🌟 **Guy** – Authoritative, versatile  
    - πŸ› οΈ **Ryan** – Approachable, casual  
    - 🎻 **William** – Classic, scholarly  
    - 🌟 **Liam** – Energetic, engaging
    """)

    if selected_voice != st.session_state['tts_voice']:
        st.session_state['tts_voice'] = selected_voice
        st.rerun()

    # Main interface
    st.markdown("<h1>πŸ“š PDF to Audio Converter 🎧</h1>", unsafe_allow_html=True)

    col1, col2 = st.columns(2)
    with col1:
        uploaded_file = st.file_uploader("Choose a PDF file", "pdf")
    with col2:
        max_pages = st.slider('Select pages to process', min_value=1, max_value=100, value=10)

    if uploaded_file:
        progress_bar = st.progress(0)
        status = st.empty()

        with st.spinner('Processing PDF...'):
            texts, audios, total_pages = process_pdf(uploaded_file, max_pages, st.session_state['tts_voice'], audio_processor)

            for i, text in enumerate(texts):
                with st.expander(f"Page {i+1}", expanded=i==0):
                    st.markdown(text)

                    # Wait for audio processing
                    while i not in audios:
                        time.sleep(0.1)
                    if audios[i]:
                        st.audio(audios[i], format='audio/mp3')

                # Add download link
                if audios[i]:
                    size_mb = len(audios[i]) / (1024 * 1024)
                    st.sidebar.markdown(
                        get_download_link(audios[i], f'page_{i+1}.mp3', size_mb),
                        unsafe_allow_html=True
                    )

                progress_bar.progress((i + 1) / total_pages)
                status.text(f"Processing page {i+1}/{total_pages}")

        st.success(f"βœ… Successfully processed {total_pages} pages!")

    # Text to Audio section
    st.markdown("### ✍️ Text to Audio")
    prompt = st.text_area("Enter text to convert to audio", height=200)

    if prompt:
        with st.spinner('Converting text to audio...'):
            audio_data = asyncio.run(audio_processor.create_audio(prompt, st.session_state['tts_voice']))
            if audio_data:
                st.audio(audio_data, format='audio/mp3')

                size_mb = len(audio_data) / (1024 * 1024)
                st.sidebar.markdown("### 🎡 Custom Audio")
                st.sidebar.markdown(
                    get_download_link(audio_data, 'custom_text.mp3', size_mb),
                    unsafe_allow_html=True
                )

    # Cache management
    if st.sidebar.button("Clear Cache"):
        for file in os.listdir(audio_processor.cache_dir):
            os.remove(os.path.join(audio_processor.cache_dir, file))
        audio_processor.metadata = {}
        audio_processor._save_metadata()
        st.sidebar.success("Cache cleared successfully!")

if __name__ == "__main__":
    main()