File size: 13,030 Bytes
6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 1478e25 6113e34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import streamlit as st
import base64
import os
import random
import glob
from PyPDF2 import PdfReader
import threading
import time
import hashlib
from datetime import datetime
import json
import asyncio
import edge_tts
# Patch asyncio for nested event loops
import nest_asyncio
nest_asyncio.apply()
# Character definitions with emojis
CHARACTERS = {
"Aria": {"emoji": "πΈ", "voice": "en-US-AriaNeural"},
"Jenny": {"emoji": "πΆ", "voice": "en-US-JennyNeural"},
"Sonia": {"emoji": "πΊ", "voice": "en-GB-SoniaNeural"},
"Natasha": {"emoji": "π", "voice": "en-AU-NatashaNeural"},
"Clara": {"emoji": "π·", "voice": "en-CA-ClaraNeural"},
"Guy": {"emoji": "π", "voice": "en-US-GuyNeural"},
"Ryan": {"emoji": "π οΈ", "voice": "en-GB-RyanNeural"},
"William": {"emoji": "π»", "voice": "en-AU-WilliamNeural"},
"Liam": {"emoji": "π", "voice": "en-CA-LiamNeural"}
}
# Initialize session state
if 'tts_voice' not in st.session_state:
st.session_state['tts_voice'] = random.choice([char["voice"] for char in CHARACTERS.values()])
if 'character' not in st.session_state:
st.session_state['character'] = random.choice(list(CHARACTERS.keys()))
if 'history' not in st.session_state:
st.session_state['history'] = []
class AudioProcessor:
def __init__(self):
self.cache_dir = "audio_cache"
self.markdown_dir = "markdown_files"
self.log_file = "history_log.md"
os.makedirs(self.cache_dir, exist_ok=True)
os.makedirs(self.markdown_dir, exist_ok=True)
self.metadata = self._load_metadata()
def _load_metadata(self):
metadata_file = os.path.join(self.cache_dir, "metadata.json")
return json.load(open(metadata_file)) if os.path.exists(metadata_file) else {}
def _save_metadata(self):
metadata_file = os.path.join(self.cache_dir, "metadata.json")
with open(metadata_file, 'w') as f:
json.dump(self.metadata, f)
def _log_action(self, action, details):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
with open(self.log_file, 'a', encoding='utf-8') as f:
f.write(f"[{timestamp}] {action}: {details}\n")
st.session_state['history'].append(f"[{timestamp}] {action}: {details}")
async def create_audio(self, text, voice, character):
cache_key = hashlib.md5(f"{text}:{voice}".encode()).hexdigest()
# Clean text for speech
text = text.replace("\n", " ").replace("</s>", " ").strip()
if not text:
return None, None
# Generate filename
timestamp = datetime.now().strftime("%I%M %p %m%d%Y")
title_words = '_'.join(text.split()[:10])
filename_base = f"{timestamp}_{character}_{title_words}"
audio_filename = f"{filename_base}.mp3"
md_filename = f"{filename_base}.md"
audio_path = os.path.join(self.cache_dir, audio_filename)
# Check cache
if cache_key in self.metadata and os.path.exists(audio_path):
return open(audio_path, 'rb').read(), cache_key
# Generate audio with edge_tts
communicate = edge_tts.Communicate(text, voice)
await communicate.save(audio_path)
# Save markdown
md_filepath = os.path.join(self.markdown_dir, md_filename)
with open(md_filepath, 'w', encoding='utf-8') as f:
f.write(f"# {title_words.replace('_', ' ')}\n\n**Character:** {character}\n**Voice:** {voice}\n\n{text}")
# Log action
self._log_action("Text to Audio", f"Created audio and markdown for '{title_words}' with {character} ({voice})")
# Update metadata
self.metadata[cache_key] = {
'timestamp': datetime.now().isoformat(),
'text_length': len(text),
'voice': voice,
'character': character,
'markdown_file': md_filename,
'audio_file': audio_filename
}
self._save_metadata()
return open(audio_path, 'rb').read(), cache_key
def get_download_link(bin_data, filename, size_mb=None):
b64 = base64.b64encode(bin_data).decode()
size_str = f"({size_mb:.1f} MB)" if size_mb else ""
return f'''
<div class="download-container">
<a href="data:audio/mpeg;base64,{b64}"
download="{filename}" class="download-link">π₯ {filename}</a>
<div class="file-info">{size_str}</div>
</div>
'''
def process_pdf(pdf_file, max_pages, voice, character, audio_processor):
reader = PdfReader(pdf_file)
total_pages = min(len(reader.pages), max_pages)
texts, audios = [], {}
async def process_page(i, text):
audio_data, _ = await audio_processor.create_audio(text, voice, character)
audios[i] = audio_data
for i in range(total_pages):
text = reader.pages[i].extract_text()
texts.append(text)
threading.Thread(
target=lambda: asyncio.run(process_page(i, text))
).start()
return texts, audios, total_pages
def main():
st.set_page_config(page_title="πPDF πͺText to π£οΈSpeech π€Transformer", page_icon="π", layout="wide")
# Apply styling
st.markdown("""
<style>
.download-link {
color: #1E90FF;
text-decoration: none;
padding: 8px 12px;
margin: 5px;
border: 1px solid #1E90FF;
border-radius: 5px;
display: inline-block;
transition: all 0.3s ease;
}
.download-link:hover {
background-color: #1E90FF;
color: white;
}
.file-info {
font-size: 0.8em;
color: gray;
margin-top: 4px;
}
</style>
""", unsafe_allow_html=True)
# Initialize processor
audio_processor = AudioProcessor()
# Sidebar settings
st.sidebar.title(f"{CHARACTERS[st.session_state['character']]['emoji']} Character Name: {st.session_state['character']}")
# Voice selection UI
st.sidebar.markdown("### π€ Voice Settings")
selected_voice = st.sidebar.selectbox(
"π Select TTS Voice:",
options=[char["voice"] for char in CHARACTERS.values()],
index=[char["voice"] for char in CHARACTERS.values()].index(st.session_state['tts_voice']),
key="voice_select"
)
selected_character = next(char for char, info in CHARACTERS.items() if info["voice"] == selected_voice)
st.sidebar.markdown("""
# ποΈ Voice Character Agent Selector π
*Female Voices*:
- πΈ **Aria** β Elegant, creative storytelling
- πΆ **Jenny** β Friendly, conversational
- πΊ **Sonia** β Bold, confident
- π **Natasha** β Sophisticated, mysterious
- π· **Clara** β Cheerful, empathetic
*Male Voices*:
- π **Guy** β Authoritative, versatile
- π οΈ **Ryan** β Approachable, casual
- π» **William** β Classic, scholarly
- π **Liam** β Energetic, engaging
""")
if selected_voice != st.session_state['tts_voice'] or selected_character != st.session_state['character']:
st.session_state['tts_voice'] = selected_voice
st.session_state['character'] = selected_character
audio_processor._log_action("Voice Change", f"Changed to {selected_character} ({selected_voice})")
st.rerun()
# Markdown file history
st.sidebar.markdown("### π Markdown History")
md_files = [f for f in os.listdir(audio_processor.markdown_dir) if f.endswith('.md') and f != 'README.md']
for md_file in md_files:
col1, col2, col3 = st.sidebar.columns([3, 1, 1])
with col1:
if st.button(f"ποΈ {md_file}", key=f"view_{md_file}"):
with open(os.path.join(audio_processor.markdown_dir, md_file), 'r', encoding='utf-8') as f:
st.session_state['current_md'] = f.read()
audio_processor._log_action("View File", f"Viewed {md_file}")
with col2:
if st.button("ποΈ", key=f"delete_md_{md_file}"):
os.remove(os.path.join(audio_processor.markdown_dir, md_file))
audio_processor._log_action("Delete Markdown", f"Deleted {md_file}")
st.rerun()
with col3:
st.write("")
# Audio file history
st.sidebar.markdown("### π΅ Audio History")
audio_files = [f for f in glob.glob(os.path.join(audio_processor.cache_dir, "*.mp3")) if os.path.basename(f).startswith(tuple([f.split('.')[0] for f in md_files]))]
for audio_file in audio_files:
audio_filename = os.path.basename(audio_file)
col1, col2, col3 = st.sidebar.columns([3, 1, 1])
with col1:
if st.button(f"βΆοΈ {audio_filename}", key=f"play_{audio_filename}"):
with open(audio_file, 'rb') as f:
st.session_state['current_audio'] = {'data': f.read(), 'name': audio_filename}
audio_processor._log_action("Play Audio", f"Played {audio_filename}")
with col2:
if st.button("ποΈ", key=f"delete_audio_{audio_filename}"):
os.remove(audio_file)
audio_processor._log_action("Delete Audio", f"Deleted {audio_filename}")
st.rerun()
with col3:
st.write("")
# History log
st.sidebar.markdown("### π Action History")
for entry in st.session_state['history']:
st.sidebar.write(entry)
# Main interface
st.markdown("<h1>π PDF to Audio Converter π§</h1>", unsafe_allow_html=True)
# Display current markdown or audio if selected
if 'current_md' in st.session_state:
st.markdown(st.session_state['current_md'])
if 'current_audio' in st.session_state:
st.markdown(f"**Playing:** {st.session_state['current_audio']['name']}")
st.audio(st.session_state['current_audio']['data'], format='audio/mp3')
col1, col2 = st.columns(2)
with col1:
uploaded_file = st.file_uploader("Choose a PDF file", "pdf")
with col2:
max_pages = st.slider('Select pages to process', min_value=1, max_value=100, value=10)
if uploaded_file:
progress_bar = st.progress(0)
status = st.empty()
with st.spinner('Processing PDF...'):
texts, audios, total_pages = process_pdf(
uploaded_file, max_pages,
st.session_state['tts_voice'],
st.session_state['character'],
audio_processor
)
for i, text in enumerate(texts):
with st.expander(f"Page {i+1}", expanded=i==0):
st.markdown(text)
while i not in audios:
time.sleep(0.1)
if audios[i]:
st.audio(audios[i], format='audio/mp3')
if audios[i]:
size_mb = len(audios[i]) / (1024 * 1024)
st.sidebar.markdown(
get_download_link(audios[i], f'page_{i+1}.mp3', size_mb),
unsafe_allow_html=True
)
progress_bar.progress((i + 1) / total_pages)
status.text(f"Processing page {i+1}/{total_pages}")
st.success(f"β
Successfully processed {total_pages} pages!")
audio_processor._log_action("PDF Processed", f"Processed {uploaded_file.name} ({total_pages} pages)")
# Text to Audio section
st.markdown("### βοΈ Text to Audio")
prompt = st.text_area("Enter text to convert to audio", height=200)
if prompt:
with st.spinner('Converting text to audio...'):
audio_data, cache_key = asyncio.run(audio_processor.create_audio(
prompt,
st.session_state['tts_voice'],
st.session_state['character']
))
if audio_data:
st.audio(audio_data, format='audio/mp3')
size_mb = len(audio_data) / (1024 * 1024)
st.sidebar.markdown("### π΅ Custom Audio")
audio_filename = audio_processor.metadata[cache_key]['audio_file']
st.sidebar.markdown(
get_download_link(audio_data, audio_filename, size_mb),
unsafe_allow_html=True
)
# Cache management
if st.sidebar.button("Clear Cache"):
for file in os.listdir(audio_processor.cache_dir):
os.remove(os.path.join(audio_processor.cache_dir, file))
for file in os.listdir(audio_processor.markdown_dir):
if file != 'README.md':
os.remove(os.path.join(audio_processor.markdown_dir, file))
audio_processor.metadata = {}
audio_processor._save_metadata()
audio_processor._log_action("Clear Cache", "Cleared audio and markdown cache")
st.sidebar.success("Cache cleared successfully!")
if __name__ == "__main__":
main() |