import io import os import re import base64 import glob import logging import random import shutil import time import zipfile import json import asyncio import aiofiles import toml from datetime import datetime from collections import Counter from dataclasses import dataclass, field from io import BytesIO from typing import Optional, List, Dict, Any import pandas as pd import pytz import streamlit as st from PIL import Image, ImageDraw from reportlab.pdfgen import canvas from reportlab.lib.utils import ImageReader from reportlab.lib.pagesizes import letter from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.enums import TA_JUSTIFY import fitz import requests try: import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq, pipeline _transformers_available = True except ImportError: _transformers_available = False st.sidebar.warning("AI/ML libraries (torch, transformers) not found. Local model features disabled.") try: from diffusers import StableDiffusionPipeline _diffusers_available = True except ImportError: _diffusers_available = False if _transformers_available: st.sidebar.warning("Diffusers library not found. Diffusion model features disabled.") try: from openai import OpenAI _openai_available = True except ImportError: _openai_available = False st.sidebar.warning("OpenAI library not found. OpenAI model features disabled.") from huggingface_hub import InferenceClient, HfApi, list_models from huggingface_hub.utils import RepositoryNotFoundError, GatedRepoError # --- App Configuration --- st.set_page_config( page_title="Vision & Layout Titans πŸš€πŸ–ΌοΈ", page_icon="πŸ€–", layout="wide", initial_sidebar_state="expanded", menu_items={ 'Get Help': 'https://huggingface.co/docs', 'Report a Bug': None, 'About': "Combined App: Image/MD->PDF Layout + AI-Powered Tools 🌌" } ) # --- Secrets Management --- try: secrets = toml.load(".streamlit/secrets.toml") if os.path.exists(".streamlit/secrets.toml") else {} HF_TOKEN = secrets.get("HF_TOKEN", os.getenv("HF_TOKEN", "")) OPENAI_API_KEY = secrets.get("OPENAI_API_KEY", os.getenv("OPENAI_API_KEY", "")) except Exception as e: st.error(f"Error loading secrets: {e}") HF_TOKEN = os.getenv("HF_TOKEN", "") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "") if not HF_TOKEN: st.sidebar.warning("Hugging Face token not found in secrets or environment. Some features may be limited.") if not OPENAI_API_KEY and _openai_available: st.sidebar.warning("OpenAI API key not found in secrets or environment. OpenAI features disabled.") # --- Logging Setup --- logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger(__name__) log_records = [] class LogCaptureHandler(logging.Handler): def emit(self, record): log_records.append(record) logger.addHandler(LogCaptureHandler()) # --- Model Initialization --- DEFAULT_PROVIDER = "hf-inference" FEATURED_MODELS_LIST = [ "meta-llama/Meta-Llama-3.1-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.3", "google/gemma-2-9b-it", "Qwen/Qwen2-7B-Instruct", "microsoft/Phi-3-mini-4k-instruct", "HuggingFaceH4/zephyr-7b-beta", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "HuggingFaceTB/SmolLM-1.7B-Instruct" ] VISION_MODELS_LIST = [ "Salesforce/blip-image-captioning-large", "microsoft/trocr-large-handwritten", "llava-hf/llava-1.5-7b-hf", "google/vit-base-patch16-224" ] DIFFUSION_MODELS_LIST = [ "stabilityai/stable-diffusion-xl-base-1.0", "runwayml/stable-diffusion-v1-5", "OFA-Sys/small-stable-diffusion-v0" ] OPENAI_MODELS_LIST = [ "gpt-4o", "gpt-4-turbo", "gpt-3.5-turbo", "text-davinci-003" ] st.session_state.setdefault('local_models', {}) st.session_state.setdefault('hf_inference_client', None) st.session_state.setdefault('openai_client', None) if _openai_available and OPENAI_API_KEY: try: st.session_state['openai_client'] = OpenAI(api_key=OPENAI_API_KEY) logger.info("OpenAI client initialized successfully.") except Exception as e: st.error(f"Failed to initialize OpenAI client: {e}") logger.error(f"OpenAI client initialization failed: {e}") st.session_state['openai_client'] = None # --- Session State Initialization --- st.session_state.setdefault('layout_snapshots', []) st.session_state.setdefault('layout_new_uploads', []) st.session_state.setdefault('history', []) st.session_state.setdefault('processing', {}) st.session_state.setdefault('asset_checkboxes', {'image': {}, 'md': {}, 'pdf': {}}) st.session_state.setdefault('downloaded_pdfs', {}) st.session_state.setdefault('unique_counter', 0) st.session_state.setdefault('cam0_file', None) st.session_state.setdefault('cam1_file', None) st.session_state.setdefault('characters', []) st.session_state.setdefault('char_form_reset_key', 0) st.session_state.setdefault('gallery_size', 10) st.session_state.setdefault('hf_provider', DEFAULT_PROVIDER) st.session_state.setdefault('hf_custom_key', "") st.session_state.setdefault('hf_selected_api_model', FEATURED_MODELS_LIST[0]) st.session_state.setdefault('hf_custom_api_model', "") st.session_state.setdefault('openai_selected_model', OPENAI_MODELS_LIST[0] if _openai_available else "") st.session_state.setdefault('selected_local_model_path', None) st.session_state.setdefault('gen_max_tokens', 512) st.session_state.setdefault('gen_temperature', 0.7) st.session_state.setdefault('gen_top_p', 0.95) st.session_state.setdefault('gen_frequency_penalty', 0.0) if 'asset_gallery_container' not in st.session_state: st.session_state['asset_gallery_container'] = {'image': st.sidebar.empty(), 'md': st.sidebar.empty(), 'pdf': st.sidebar.empty()} # --- Dataclasses --- @dataclass class LocalModelConfig: name: str hf_id: str model_type: str size_category: str = "unknown" domain: Optional[str] = None local_path: str = field(init=False) def __post_init__(self): type_folder = f"{self.model_type}_models" safe_name = re.sub(r'[^\w\-]+', '_', self.name) self.local_path = os.path.join(type_folder, safe_name) def get_full_path(self): return os.path.abspath(self.local_path) @dataclass class DiffusionConfig: name: str base_model: str size: str domain: Optional[str] = None @property def model_path(self): return f"diffusion_models/{self.name}" # --- Helper Functions --- def generate_filename(sequence, ext="png"): timestamp = time.strftime('%Y%m%d_%H%M%S') safe_sequence = re.sub(r'[^\w\-]+', '_', str(sequence)) return f"{safe_sequence}_{timestamp}.{ext}" def pdf_url_to_filename(url): name = re.sub(r'^https?://', '', url) name = re.sub(r'[<>:"/\\|?*]', '_', name) return name[:100] + ".pdf" def get_download_link(file_path, mime_type="application/octet-stream", label="Download"): if not os.path.exists(file_path): return f"{label} (File not found)" try: with open(file_path, "rb") as f: file_bytes = f.read() b64 = base64.b64encode(file_bytes).decode() return f'{label}' except Exception as e: logger.error(f"Error creating download link for {file_path}: {e}") return f"{label} (Error)" def zip_directory(directory_path, zip_path): with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, _, files in os.walk(directory_path): for file in files: file_path = os.path.join(root, file) zipf.write(file_path, os.path.relpath(file_path, os.path.dirname(directory_path))) def get_local_model_paths(model_type="causal"): pattern = f"{model_type}_models/*" dirs = [d for d in glob.glob(pattern) if os.path.isdir(d)] return dirs def get_gallery_files(file_types=("png", "pdf", "jpg", "jpeg", "md", "txt")): all_files = set() for ext in file_types: all_files.update(glob.glob(f"*.{ext.lower()}")) all_files.update(glob.glob(f"*.{ext.upper()}")) return sorted([f for f in all_files if os.path.basename(f).lower() != 'readme.md']) def get_typed_gallery_files(file_type): if file_type == 'image': return get_gallery_files(('png', 'jpg', 'jpeg')) elif file_type == 'md': return get_gallery_files(('md',)) elif file_type == 'pdf': return get_gallery_files(('pdf',)) return [] def download_pdf(url, output_path): try: headers = {'User-Agent': 'Mozilla/5.0'} response = requests.get(url, stream=True, timeout=20, headers=headers) response.raise_for_status() with open(output_path, "wb") as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) logger.info(f"Successfully downloaded {url} to {output_path}") return True except requests.exceptions.RequestException as e: logger.error(f"Failed to download {url}: {e}") if os.path.exists(output_path): try: os.remove(output_path) except: pass return False except Exception as e: logger.error(f"An unexpected error occurred during download of {url}: {e}") if os.path.exists(output_path): try: os.remove(output_path) except: pass return False async def process_pdf_snapshot(pdf_path, mode="single", resolution_factor=2.0): start_time = time.time() status_placeholder = st.empty() status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... (0s)") output_files = [] try: doc = fitz.open(pdf_path) matrix = fitz.Matrix(resolution_factor, resolution_factor) num_pages_to_process = min(1, len(doc)) if mode == "single" else min(2, len(doc)) if mode == "twopage" else len(doc) for i in range(num_pages_to_process): page_start_time = time.time() page = doc[i] pix = page.get_pixmap(matrix=matrix) base_name = os.path.splitext(os.path.basename(pdf_path))[0] output_file = generate_filename(f"{base_name}_pg{i+1}_{mode}", "png") await asyncio.to_thread(pix.save, output_file) output_files.append(output_file) elapsed_page = int(time.time() - page_start_time) status_placeholder.text(f"Processing PDF Snapshot ({mode}, Res: {resolution_factor}x)... Page {i+1}/{num_pages_to_process} done ({elapsed_page}s)") await asyncio.sleep(0.01) doc.close() elapsed = int(time.time() - start_time) status_placeholder.success(f"PDF Snapshot ({mode}, {len(output_files)} files) completed in {elapsed}s!") return output_files except Exception as e: logger.error(f"Failed to process PDF snapshot for {pdf_path}: {e}") status_placeholder.error(f"Failed to process PDF {os.path.basename(pdf_path)}: {e}") for f in output_files: if os.path.exists(f): os.remove(f) return [] def get_hf_client() -> Optional[InferenceClient]: provider = st.session_state.hf_provider custom_key = st.session_state.hf_custom_key.strip() token_to_use = custom_key if custom_key else HF_TOKEN if not token_to_use and provider != "hf-inference": st.error(f"Provider '{provider}' requires a Hugging Face API token.") return None if provider == "hf-inference" and not token_to_use: logger.warning("Using hf-inference provider without a token. Rate limits may apply.") token_to_use = None current_client = st.session_state.get('hf_inference_client') needs_reinit = True if current_client: client_uses_custom = hasattr(current_client, '_token') and current_client._token == custom_key client_uses_default = hasattr(current_client, '_token') and current_client._token == HF_TOKEN client_uses_no_token = not hasattr(current_client, '_token') or current_client._token is None if current_client.provider == provider: if custom_key and client_uses_custom: needs_reinit = False elif not custom_key and HF_TOKEN and client_uses_default: needs_reinit = False elif not custom_key and not HF_TOKEN and client_uses_no_token: needs_reinit = False if needs_reinit: try: logger.info(f"Initializing InferenceClient for provider: {provider}.") st.session_state.hf_inference_client = InferenceClient(token=token_to_use, provider=provider) logger.info("InferenceClient initialized successfully.") except Exception as e: st.error(f"Failed to initialize Hugging Face client: {e}") logger.error(f"InferenceClient initialization failed: {e}") st.session_state.hf_inference_client = None return st.session_state.hf_inference_client def process_text_hf(text: str, prompt: str, use_api: bool, model_id: str = None) -> str: status_placeholder = st.empty() start_time = time.time() result_text = "" params = { "max_new_tokens": st.session_state.gen_max_tokens, "temperature": st.session_state.gen_temperature, "top_p": st.session_state.gen_top_p, "repetition_penalty": st.session_state.gen_frequency_penalty + 1.0, } seed = st.session_state.gen_seed if seed != -1: params["seed"] = seed system_prompt = "You are a helpful assistant. Process the following text based on the user's request." full_prompt = f"{prompt}\n\n---\n\n{text}" messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": full_prompt} ] if use_api: status_placeholder.info("Processing text using Hugging Face API...") client = get_hf_client() if not client: return "Error: Hugging Face client not available." model_id = model_id or st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model status_placeholder.info(f"Using API Model: {model_id}") try: response = client.chat_completion( model=model_id, messages=messages, max_tokens=params['max_new_tokens'], temperature=params['temperature'], top_p=params['top_p'], ) result_text = response.choices[0].message.content or "" logger.info(f"HF API text processing successful for model {model_id}.") except Exception as e: logger.error(f"HF API text processing failed for model {model_id}: {e}") result_text = f"Error during Hugging Face API inference: {str(e)}" else: status_placeholder.info("Processing text using local model...") if not _transformers_available: return "Error: Transformers library not available." model_path = st.session_state.get('selected_local_model_path') if not model_path or model_path not in st.session_state.get('local_models', {}): return "Error: No suitable local model selected." local_model_data = st.session_state['local_models'][model_path] if local_model_data.get('type') != 'causal': return f"Error: Loaded model '{os.path.basename(model_path)}' is not a Causal LM." status_placeholder.info(f"Using Local Model: {os.path.basename(model_path)}") model = local_model_data.get('model') tokenizer = local_model_data.get('tokenizer') if not model or not tokenizer: return f"Error: Model or tokenizer not found for {os.path.basename(model_path)}." try: try: prompt_for_model = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) except Exception: logger.warning(f"Could not apply chat template for {model_path}. Using basic formatting.") prompt_for_model = f"System: {system_prompt}\nUser: {full_prompt}\nAssistant:" inputs = tokenizer(prompt_for_model, return_tensors="pt", padding=True, truncation=True, max_length=params['max_new_tokens'] * 2) inputs = {k: v.to(model.device) for k, v in inputs.items()} generate_params = { "max_new_tokens": params['max_new_tokens'], "temperature": params['temperature'], "top_p": params['top_p'], "repetition_penalty": params.get('repetition_penalty', 1.0), "do_sample": True if params['temperature'] > 0.1 else False, "pad_token_id": tokenizer.eos_token_id } with torch.no_grad(): outputs = model.generate(**inputs, **generate_params) input_length = inputs['input_ids'].shape[1] generated_ids = outputs[0][input_length:] result_text = tokenizer.decode(generated_ids, skip_special_tokens=True) logger.info(f"Local text processing successful for model {model_path}.") except Exception as e: logger.error(f"Local text processing failed for model {model_path}: {e}") result_text = f"Error during local model inference: {str(e)}" elapsed = int(time.time() - start_time) status_placeholder.success(f"Text processing completed in {elapsed}s.") return result_text def process_text_openai(text: str, prompt: str, model_id: str) -> str: if not _openai_available or not st.session_state.get('openai_client'): return "Error: OpenAI client not available or API key missing." status_placeholder = st.empty() start_time = time.time() client = st.session_state['openai_client'] system_prompt = "You are a helpful assistant. Process the following text based on the user's request." full_prompt = f"{prompt}\n\n---\n\n{text}" messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": full_prompt} ] status_placeholder.info(f"Processing text using OpenAI model: {model_id}...") try: response = client.chat.completions.create( model=model_id, messages=messages, max_tokens=st.session_state.gen_max_tokens, temperature=st.session_state.gen_temperature, top_p=st.session_state.gen_top_p, ) result_text = response.choices[0].message.content or "" logger.info(f"OpenAI text processing successful for model {model_id}.") except Exception as e: logger.error(f"OpenAI text processing failed for model {model_id}: {e}") result_text = f"Error during OpenAI inference: {str(e)}" elapsed = int(time.time() - start_time) status_placeholder.success(f"Text processing completed in {elapsed}s.") return result_text def process_image_hf(image: Image.Image, prompt: str, use_api: bool, model_id: str = None) -> str: status_placeholder = st.empty() start_time = time.time() result_text = "" if use_api: status_placeholder.info("Processing image using Hugging Face API...") client = get_hf_client() if not client: return "Error: HF client not configured." buffered = BytesIO() image.save(buffered, format="PNG" if image.format != 'JPEG' else 'JPEG') img_bytes = buffered.getvalue() model_id = model_id or "Salesforce/blip-image-captioning-large" status_placeholder.info(f"Using API Image-to-Text Model: {model_id}") try: response_list = client.image_to_text(data=img_bytes, model=model_id) if response_list and isinstance(response_list, list) and 'generated_text' in response_list[0]: result_text = response_list[0]['generated_text'] logger.info(f"HF API image captioning successful for model {model_id}.") else: result_text = "Error: Unexpected response format from image-to-text API." logger.warning(f"Unexpected API response for image-to-text: {response_list}") except Exception as e: logger.error(f"HF API image processing failed: {e}") result_text = f"Error during Hugging Face API image inference: {str(e)}" else: status_placeholder.info("Processing image using local model...") if not _transformers_available: return "Error: Transformers library needed." model_path = st.session_state.get('selected_local_model_path') if not model_path or model_path not in st.session_state.get('local_models', {}): return "Error: No suitable local model selected." local_model_data = st.session_state['local_models'][model_path] model_type = local_model_data.get('type') if model_type == 'vision': processor = local_model_data.get('processor') model = local_model_data.get('model') if processor and model: try: inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=st.session_state.gen_max_tokens) result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() except Exception as e: result_text = f"Error during local vision model inference: {e}" else: result_text = "Error: Processor or model missing for local vision task." elif model_type == 'ocr': processor = local_model_data.get('processor') model = local_model_data.get('model') if processor and model: try: pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(model.device) generated_ids = model.generate(pixel_values, max_new_tokens=st.session_state.gen_max_tokens) result_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] except Exception as e: result_text = f"Error during local OCR model inference: {e}" else: result_text = "Error: Processor or model missing for local OCR task." else: result_text = f"Error: Loaded model '{os.path.basename(model_path)}' is not a recognized vision/OCR type." elapsed = int(time.time() - start_time) status_placeholder.success(f"Image processing completed in {elapsed}s.") return result_text def process_image_openai(image: Image.Image, prompt: str, model_id: str = "gpt-4o") -> str: if not _openai_available or not st.session_state.get('openai_client'): return "Error: OpenAI client not available or API key missing." status_placeholder = st.empty() start_time = time.time() client = st.session_state['openai_client'] buffered = BytesIO() image.save(buffered, format="PNG") img_b64 = base64.b64encode(buffered.getvalue()).decode() status_placeholder.info(f"Processing image using OpenAI model: {model_id}...") try: response = client.chat.completions.create( model=model_id, messages=[ {"role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_b64}"}} ]} ], max_tokens=st.session_state.gen_max_tokens, temperature=st.session_state.gen_temperature, ) result_text = response.choices[0].message.content or "" logger.info(f"OpenAI image processing successful for model {model_id}.") except Exception as e: logger.error(f"OpenAI image processing failed for model {model_id}: {e}") result_text = f"Error during OpenAI image inference: {str(e)}" elapsed = int(time.time() - start_time) status_placeholder.success(f"Image processing completed in {elapsed}s.") return result_text async def process_hf_ocr(image: Image.Image, output_file: str, use_api: bool, model_id: str = None) -> str: ocr_prompt = "Extract text content from this image." result = process_image_hf(image, ocr_prompt, use_api, model_id=model_id or "microsoft/trocr-large-handwritten") if result and not result.startswith("Error") and not result.startswith("["): try: async with aiofiles.open(output_file, "w", encoding='utf-8') as f: await f.write(result) logger.info(f"HF OCR result saved to {output_file}") except IOError as e: logger.error(f"Failed to save HF OCR output to {output_file}: {e}") result += f"\n[Error saving file: {e}]" elif os.path.exists(output_file): try: os.remove(output_file) except OSError: pass return result async def process_openai_ocr(image: Image.Image, output_file: str, model_id: str = "gpt-4o") -> str: ocr_prompt = "Extract text content from this image." result = process_image_openai(image, ocr_prompt, model_id) if result and not result.startswith("Error"): try: async with aiofiles.open(output_file, "w", encoding='utf-8') as f: await f.write(result) logger.info(f"OpenAI OCR result saved to {output_file}") except IOError as e: logger.error(f"Failed to save OpenAI OCR output to {output_file}: {e}") result += f"\n[Error saving file: {e}]" elif os.path.exists(output_file): try: os.remove(output_file) except OSError: pass return result def randomize_character_content(): intro_templates = [ "{char} is a valiant knight...", "{char} is a mischievous thief...", "{char} is a wise scholar...", "{char} is a fiery warrior...", "{char} is a gentle healer..." ] greeting_templates = [ "'I am from the knight's guild...'", "'I heard you needed helpβ€”name’s {char}...", "'Oh, hello! I’m {char}, didn’t see you there...'", "'I’m {char}, and I’m here to fight...'", "'I’m {char}, here to heal...'" ] name = f"Character_{random.randint(1000, 9999)}" gender = random.choice(["Male", "Female"]) intro = random.choice(intro_templates).format(char=name) greeting = random.choice(greeting_templates).format(char=name) return name, gender, intro, greeting def save_character(character_data): characters = st.session_state.get('characters', []) if any(c['name'] == character_data['name'] for c in characters): st.error(f"Character name '{character_data['name']}' already exists.") return False characters.append(character_data) st.session_state['characters'] = characters try: with open("characters.json", "w", encoding='utf-8') as f: json.dump(characters, f, indent=2) logger.info(f"Saved character: {character_data['name']}") return True except IOError as e: logger.error(f"Failed to save characters.json: {e}") st.error(f"Failed to save character file: {e}") return False def load_characters(): if not os.path.exists("characters.json"): st.session_state['characters'] = [] return try: with open("characters.json", "r", encoding='utf-8') as f: characters = json.load(f) if isinstance(characters, list): st.session_state['characters'] = characters logger.info(f"Loaded {len(characters)} characters.") else: st.session_state['characters'] = [] logger.warning("characters.json is not a list, resetting.") os.remove("characters.json") except (json.JSONDecodeError, IOError) as e: logger.error(f"Failed to load or decode characters.json: {e}") st.error(f"Error loading character file: {e}. Starting fresh.") st.session_state['characters'] = [] try: corrupt_filename = f"characters_corrupt_{int(time.time())}.json" shutil.copy("characters.json", corrupt_filename) logger.info(f"Backed up corrupted character file to {corrupt_filename}") os.remove("characters.json") except Exception as backup_e: logger.error(f"Could not backup corrupted character file: {backup_e}") def clean_stem(fn: str) -> str: name = os.path.splitext(os.path.basename(fn))[0] name = name.replace('-', ' ').replace('_', ' ') return name.strip().title() def make_image_sized_pdf(sources, is_markdown_flags): if not sources: st.warning("No sources provided for PDF generation.") return None buf = BytesIO() styles = getSampleStyleSheet() md_style = ParagraphStyle( name='Markdown', fontSize=10, leading=12, spaceAfter=6, alignment=TA_JUSTIFY, fontName='Helvetica' ) doc = SimpleDocTemplate(buf, pagesize=letter, rightMargin=36, leftMargin=36, topMargin=36, bottomMargin=36) story = [] try: for idx, (src, is_md) in enumerate(zip(sources, is_markdown_flags), start=1): status_placeholder = st.empty() filename = 'page_' + str(idx) status_placeholder.info(f"Adding page {idx}/{len(sources)}: {os.path.basename(str(src))}...") try: if is_md: with open(src, 'r', encoding='utf-8') as f: content = f.read() content = re.sub(r'!\[.*?\]\(.*?\)', '', content) paragraphs = content.split('\n\n') for para in paragraphs: if para.strip(): story.append(Paragraph(para.strip(), md_style)) story.append(PageBreak()) status_placeholder.success(f"Added markdown page {idx}/{len(sources)}: {filename}") else: if isinstance(src, str): if not os.path.exists(src): logger.warning(f"Image file not found: {src}. Skipping.") status_placeholder.warning(f"Skipping missing file: {os.path.basename(src)}") continue img_obj = Image.open(src) filename = os.path.basename(src) else: src.seek(0) img_obj = Image.open(src) filename = getattr(src, 'name', f'uploaded_image_{idx}') src.seek(0) with img_obj: iw, ih = img_obj.size if iw <= 0 or ih <= 0: logger.warning(f"Invalid image dimensions ({iw}x{ih}) for {filename}. Skipping.") status_placeholder.warning(f"Skipping invalid image: {filename}") continue cap_h = 30 c = canvas.Canvas(BytesIO(), pagesize=(iw, ih + cap_h)) img_reader = ImageReader(img_obj) c.drawImage(img_reader, 0, cap_h, width=iw, height=ih, preserveAspectRatio=True, anchor='c', mask='auto') caption = clean_stem(filename) c.setFont('Helvetica', 12) c.setFillColorRGB(0, 0, 0) c.drawCentredString(iw / 2, cap_h / 2 + 3, caption) c.setFont('Helvetica', 8) c.setFillColorRGB(0.5, 0.5, 0.5) c.drawRightString(iw - 10, 8, f"Page {idx}") c.save() story.append(PageBreak()) status_placeholder.success(f"Added image page {idx}/{len(sources)}: {filename}") except Exception as e: logger.error(f"Error processing source {src}: {e}") status_placeholder.error(f"Error adding page {idx}: {e}") doc.build(story) buf.seek(0) if buf.getbuffer().nbytes < 100: st.error("PDF generation resulted in an empty file.") return None return buf.getvalue() except Exception as e: logger.error(f"Fatal error during PDF generation: {e}") st.error(f"PDF Generation Failed: {e}") return None def update_gallery(gallery_type='image'): container = st.session_state['asset_gallery_container'][gallery_type] with container: st.markdown(f"### {gallery_type.capitalize()} Gallery πŸ“Έ") files = get_typed_gallery_files(gallery_type) if not files: st.info(f"No {gallery_type} assets found yet.") return st.caption(f"Found {len(files)} assets:") for idx, file in enumerate(files[:st.session_state.gallery_size]): st.session_state['unique_counter'] += 1 unique_id = st.session_state['unique_counter'] item_key_base = f"{gallery_type}_gallery_item_{os.path.basename(file)}_{unique_id}" basename = os.path.basename(file) st.markdown(f"**{basename}**") try: file_ext = os.path.splitext(file)[1].lower() if gallery_type == 'image' and file_ext in ['.png', '.jpg', '.jpeg']: with st.expander("Preview", expanded=False): st.image(Image.open(file), use_container_width=True) elif gallery_type == 'pdf' and file_ext == '.pdf': with st.expander("Preview (Page 1)", expanded=False): doc = fitz.open(file) if len(doc) > 0: pix = doc[0].get_pixmap(matrix=fitz.Matrix(0.5, 0.5)) img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) st.image(img, use_container_width=True) else: st.warning("Empty PDF") doc.close() elif gallery_type == 'md' and file_ext == '.md': with st.expander("Preview (Start)", expanded=False): with open(file, 'r', encoding='utf-8', errors='ignore') as f: content_preview = f.read(200) st.code(content_preview + "...", language='markdown') action_cols = st.columns(3) with action_cols[0]: checkbox_key = f"cb_{item_key_base}" st.session_state['asset_checkboxes'][gallery_type][file] = st.checkbox( "Select", value=st.session_state['asset_checkboxes'][gallery_type].get(file, False), key=checkbox_key ) with action_cols[1]: mime_map = {'.png': 'image/png', '.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.pdf': 'application/pdf', '.md': 'text/markdown'} mime_type = mime_map.get(file_ext, "application/octet-stream") dl_key = f"dl_{item_key_base}" try: with open(file, "rb") as fp: st.download_button( label="πŸ“₯", data=fp, file_name=basename, mime=mime_type, key=dl_key, help="Download this file" ) except Exception as dl_e: st.error(f"Download Error: {dl_e}") with action_cols[2]: delete_key = f"del_{item_key_base}" if st.button("πŸ—‘οΈ", key=delete_key, help=f"Delete {basename}"): try: os.remove(file) st.session_state['asset_checkboxes'][gallery_type].pop(file, None) if file in st.session_state.get('layout_snapshots', []): st.session_state['layout_snapshots'].remove(file) logger.info(f"Deleted {gallery_type} asset: {file}") st.toast(f"Deleted {basename}!", icon="βœ…") st.rerun() except OSError as e: logger.error(f"Error deleting file {file}: {e}") st.error(f"Could not delete {basename}") except Exception as e: st.error(f"Error displaying {basename}: {e}") logger.error(f"Error displaying asset {file}: {e}") st.markdown("---") # --- UI Elements --- st.sidebar.subheader("πŸ€– AI Settings") with st.sidebar.expander("API Inference Settings", expanded=False): st.session_state.hf_custom_key = st.text_input( "Custom HF Token", value=st.session_state.get('hf_custom_key', ""), type="password", key="hf_custom_key_input" ) token_status = "Custom Key Set" if st.session_state.hf_custom_key else ("Default HF_TOKEN Set" if HF_TOKEN else "No Token Set") st.caption(f"HF Token Status: {token_status}") providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"] st.session_state.hf_provider = st.selectbox( "HF Inference Provider", options=providers_list, index=providers_list.index(st.session_state.get('hf_provider', DEFAULT_PROVIDER)), key="hf_provider_select" ) st.session_state.hf_custom_api_model = st.text_input( "Custom HF API Model ID", value=st.session_state.get('hf_custom_api_model', ""), key="hf_custom_model_input" ) effective_hf_model = st.session_state.hf_custom_api_model.strip() or st.session_state.hf_selected_api_model st.session_state.hf_selected_api_model = st.selectbox( "Featured HF API Model", options=FEATURED_MODELS_LIST, index=FEATURED_MODELS_LIST.index(st.session_state.get('hf_selected_api_model', FEATURED_MODELS_LIST[0])), key="hf_featured_model_select" ) st.caption(f"Effective HF API Model: {effective_hf_model}") if _openai_available: st.session_state.openai_selected_model = st.selectbox( "OpenAI Model", options=OPENAI_MODELS_LIST, index=OPENAI_MODELS_LIST.index(st.session_state.get('openai_selected_model', OPENAI_MODELS_LIST[0])), key="openai_model_select" ) with st.sidebar.expander("Local Model Selection", expanded=True): if not _transformers_available: st.warning("Transformers library not found. Cannot load local models.") else: local_model_options = ["None"] + list(st.session_state.get('local_models', {}).keys()) current_selection = st.session_state.get('selected_local_model_path', "None") if current_selection not in local_model_options: current_selection = "None" selected_path = st.selectbox( "Active Local Model", options=local_model_options, index=local_model_options.index(current_selection), format_func=lambda x: os.path.basename(x) if x != "None" else "None", key="local_model_selector" ) st.session_state.selected_local_model_path = selected_path if selected_path != "None" else None if st.session_state.selected_local_model_path: model_info = st.session_state.local_models[st.session_state.selected_local_model_path] st.caption(f"Type: {model_info.get('type', 'Unknown')}") st.caption(f"Device: {model_info.get('model').device if model_info.get('model') else 'N/A'}") else: st.caption("No local model selected.") with st.sidebar.expander("Generation Parameters", expanded=False): st.session_state.gen_max_tokens = st.slider("Max New Tokens", 1, 4096, st.session_state.get('gen_max_tokens', 512), key="param_max_tokens") st.session_state.gen_temperature = st.slider("Temperature", 0.01, 2.0, st.session_state.get('gen_temperature', 0.7), step=0.01, key="param_temp") st.session_state.gen_top_p = st.slider("Top-P", 0.01, 1.0, st.session_state.get('gen_top_p', 0.95), step=0.01, key="param_top_p") st.session_state.gen_frequency_penalty = st.slider("Repetition Penalty", 0.0, 1.0, st.session_state.get('gen_frequency_penalty', 0.0), step=0.05, key="param_repetition") st.session_state.gen_seed = st.slider("Seed", -1, 65535, st.session_state.get('gen_seed', -1), step=1, key="param_seed") st.sidebar.subheader("πŸ–ΌοΈ Gallery Settings") st.slider( "Max Items Shown", min_value=2, max_value=50, value=st.session_state.get('gallery_size', 10), key="gallery_size_slider" ) st.session_state.gallery_size = st.session_state.gallery_size_slider st.sidebar.markdown("---") update_gallery('image') update_gallery('md') update_gallery('pdf') # --- Main Application --- st.title("Vision & Layout Titans πŸš€πŸ–ΌοΈπŸ“„") st.markdown("Create PDFs from images and markdown, process with AI, and manage characters.") tabs = st.tabs([ "Image/MD->PDF Layout πŸ–ΌοΈβž‘οΈπŸ“„", "Camera Snap πŸ“·", "Download PDFs πŸ“₯", "Build Titan (Local Models) 🌱", "PDF Process (AI) πŸ“„", "Image Process (AI) πŸ–ΌοΈ", "Text Process (AI) πŸ“", "Test OCR (AI) πŸ”", "Test Image Gen (Diffusers) 🎨", "Character Editor πŸ§‘β€πŸŽ¨", "Character Gallery πŸ–ΌοΈ" ]) with tabs[0]: st.header("Image/Markdown to PDF Layout Generator") st.markdown("Select images and markdown files, reorder them, and generate a PDF.") col1, col2 = st.columns(2) with col1: st.subheader("A. Select Assets") selected_images = [f for f in get_typed_gallery_files('image') if st.session_state['asset_checkboxes']['image'].get(f, False)] selected_mds = [f for f in get_typed_gallery_files('md') if st.session_state['asset_checkboxes']['md'].get(f, False)] st.write(f"Selected Images: {len(selected_images)}") st.write(f"Selected Markdown Files: {len(selected_mds)}") with col2: st.subheader("B. Review and Reorder") layout_records = [] for idx, path in enumerate(selected_images + selected_mds, start=1): is_md = path in selected_mds try: if is_md: with open(path, 'r', encoding='utf-8') as f: content = f.read(50) layout_records.append({ "filename": os.path.basename(path), "source": path, "type": "Markdown", "preview": content + "...", "order": idx }) else: with Image.open(path) as im: w, h = im.size ar = round(w / h, 2) if h > 0 else 0 orient = "Square" if 0.9 <= ar <= 1.1 else ("Landscape" if ar > 1.1 else "Portrait") layout_records.append({ "filename": os.path.basename(path), "source": path, "type": "Image", "width": w, "height": h, "aspect_ratio": ar, "orientation": orient, "order": idx }) except Exception as e: logger.warning(f"Could not process {path}: {e}") st.warning(f"Skipping invalid file: {os.path.basename(path)}") if not layout_records: st.infoperiod