Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import os, random, glob, re, json, base64 | |
from datetime import datetime | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import spaces | |
import torch | |
import pandas as pd | |
from diffusers import AutoencoderKL, DiffusionPipeline | |
DESCRIPTION = """ | |
# 🎨 ArtForge: OpenDALLE AI Masterpiece Arena 🖼️🏆 | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. Please use <a href=\"https://huggingface.co/spaces/mrfakename/OpenDalleV1.1-GPU-Demo\">the online demo</a> instead.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" | |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "0") == "1" | |
# Global variables for metadata and likes cache | |
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created']) | |
LIKES_CACHE_FILE = "likes_cache.json" | |
def load_likes_cache(): | |
if os.path.exists(LIKES_CACHE_FILE): | |
with open(LIKES_CACHE_FILE, 'r') as f: | |
return json.load(f) | |
return {} | |
def save_likes_cache(cache): | |
with open(LIKES_CACHE_FILE, 'w') as f: | |
json.dump(cache, f) | |
likes_cache = load_likes_cache() | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
if torch.cuda.is_available(): | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = DiffusionPipeline.from_pretrained("dataautogpt3/OpenDalleV1.1", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16") | |
if ENABLE_REFINER: | |
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16") | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
if ENABLE_REFINER: refiner.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
if ENABLE_REFINER: refiner.to(device) | |
if USE_TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
if ENABLE_REFINER: refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
return random.randint(0, MAX_SEED) if randomize_seed else seed | |
def create_download_link(filename): | |
with open(filename, "rb") as file: | |
encoded_string = base64.b64encode(file.read()).decode('utf-8') | |
download_link = f'<a href="data:image/png;base64,{encoded_string}" download="{filename}">Download Image</a>' | |
return download_link | |
def save_image(image: PIL.Image.Image, prompt: str) -> str: | |
global image_metadata, likes_cache | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
safe_prompt = re.sub(r'[^\w\s-]', '', prompt.lower())[:50] | |
safe_prompt = re.sub(r'[-\s]+', '-', safe_prompt).strip('-') | |
filename = f"{timestamp}_{safe_prompt}.png" | |
image.save(filename) | |
new_row = pd.DataFrame({ | |
'Filename': [filename], | |
'Prompt': [prompt], | |
'Likes': [0], | |
'Dislikes': [0], | |
'Hearts': [0], | |
'Created': [datetime.now()] | |
}) | |
image_metadata = pd.concat([image_metadata, new_row], ignore_index=True) | |
likes_cache[filename] = {'likes': 0, 'dislikes': 0, 'hearts': 0} | |
save_likes_cache(likes_cache) | |
return filename | |
def get_image_gallery(): | |
global image_metadata | |
image_files = image_metadata['Filename'].tolist() | |
return [(file, get_image_caption(file)) for file in image_files if os.path.exists(file)] | |
def get_image_caption(filename): | |
global likes_cache, image_metadata | |
if filename in likes_cache: | |
likes = likes_cache[filename]['likes'] | |
dislikes = likes_cache[filename]['dislikes'] | |
hearts = likes_cache[filename]['hearts'] | |
prompt = image_metadata[image_metadata['Filename'] == filename]['Prompt'].values[0] | |
return f"{filename}\nPrompt: {prompt}\n👍 {likes} 👎 {dislikes} ❤️ {hearts}" | |
return filename | |
def delete_all_images(): | |
global image_metadata, likes_cache | |
for file in image_metadata['Filename']: | |
if os.path.exists(file): | |
os.remove(file) | |
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created']) | |
likes_cache = {} | |
save_likes_cache(likes_cache) | |
return get_image_gallery(), image_metadata.values.tolist() | |
def delete_image(filename): | |
global image_metadata, likes_cache | |
if filename and os.path.exists(filename): | |
os.remove(filename) | |
image_metadata = image_metadata[image_metadata['Filename'] != filename] | |
if filename in likes_cache: | |
del likes_cache[filename] | |
save_likes_cache(likes_cache) | |
return get_image_gallery(), image_metadata.values.tolist() | |
def vote(filename, vote_type): | |
global likes_cache | |
if filename in likes_cache: | |
likes_cache[filename][vote_type.lower()] += 1 | |
save_likes_cache(likes_cache) | |
return get_image_gallery(), image_metadata.values.tolist() | |
def generate(prompt: str, negative_prompt: str = "", prompt_2: str = "", negative_prompt_2: str = "", use_negative_prompt: bool = False, use_prompt_2: bool = False, use_negative_prompt_2: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale_base: float = 5.0, guidance_scale_refiner: float = 5.0, num_inference_steps_base: int = 25, num_inference_steps_refiner: int = 25, apply_refiner: bool = False, progress=gr.Progress(track_tqdm=True)) -> PIL.Image.Image: | |
print(f"** Generating image for: \"{prompt}\" **") | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: negative_prompt = None | |
if not use_prompt_2: prompt_2 = None | |
if not use_negative_prompt_2: negative_prompt_2 = None | |
if not apply_refiner: | |
image = pipe(prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, width=width, height=height, guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, generator=generator, output_type="pil").images[0] | |
else: | |
latents = pipe(prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, width=width, height=height, guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, generator=generator, output_type="latent").images | |
image = refiner(prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, guidance_scale=guidance_scale_refiner, num_inference_steps=num_inference_steps_refiner, image=latents, generator=generator).images[0] | |
filename = save_image(image, prompt) | |
download_link = create_download_link(filename) | |
return image, get_image_gallery(), download_link, image_metadata.values.tolist() | |
examples = [ | |
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} painting of a majestic lighthouse on a rocky coast. Use bold brushstrokes and a vibrant color palette to capture the interplay of light and shadow as the lighthouse beam cuts through a stormy night sky.", | |
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} still life featuring a pair of vintage eyeglasses. Focus on the intricate details of the frames and lenses, using a warm color scheme to evoke a sense of nostalgia and wisdom.", | |
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} depiction of a rustic wooden stool in a sunlit artist's studio. Emphasize the texture of the wood and the interplay of light and shadow, using a mix of earthy tones and highlights.", | |
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} scene viewed through an ornate window frame. Contrast the intricate details of the window with a dreamy, soft-focus landscape beyond, using a palette that transitions from cool interior tones to warm exterior hues.", | |
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} close-up study of interlaced fingers. Use a monochromatic color scheme to emphasize the form and texture of the hands, with dramatic lighting to create depth and emotion.", | |
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} composition featuring a set of dice in motion. Capture the energy and randomness of the throw, using a dynamic color palette and blurred lines to convey movement.", | |
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} interpretation of heaven. Create an ethereal atmosphere with soft, billowing clouds and radiant light, using a palette of celestial blues, golds, and whites.", | |
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} portrayal of an ancient, mystical gate. Combine architectural details with elements of fantasy, using a rich, jewel-toned palette to create an air of mystery and magic.", | |
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} portrait of a curious cat. Focus on capturing the feline's expressive eyes and sleek form, using a mix of bold and subtle colors to bring out the cat's personality.", | |
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} abstract representation of toes in sand. Use textured brushstrokes to convey the feeling of warm sand, with a palette inspired by a sun-drenched beach." | |
] | |
css = ''' | |
.gradio-container {max-width: 1024px !important} | |
h1 {text-align: center} | |
footer {visibility: hidden} | |
''' | |
theme = gr.themes.Soft() | |
with gr.Blocks(css=css, theme=theme) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1") | |
with gr.Tab("Generate Images"): | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False) | |
run_button = gr.Button("Generate", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
download_link = gr.HTML(label="Download", show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) | |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) | |
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False) | |
negative_prompt = gr.Text(label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False) | |
prompt_2 = gr.Text(label="Prompt 2", max_lines=1, placeholder="Enter your second prompt", visible=False) | |
negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", visible=False) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER) | |
with gr.Row(): | |
guidance_scale_base = gr.Slider(label="Guidance scale for base", minimum=1, maximum=20, step=0.1, value=5.0) | |
num_inference_steps_base = gr.Slider(label="Number of inference steps for base", minimum=10, maximum=100, step=1, value=25) | |
with gr.Row(visible=False) as refiner_params: | |
guidance_scale_refiner = gr.Slider(label="Guidance scale for refiner", minimum=1, maximum=20, step=0.1, value=5.0) | |
num_inference_steps_refiner = gr.Slider(label="Number of inference steps for refiner", minimum=10, maximum=100, step=1, value=25) | |
with gr.Tab("Gallery and Voting"): | |
image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=4, height="auto") | |
with gr.Row(): | |
like_button = gr.Button("👍 Like") | |
dislike_button = gr.Button("👎 Dislike") | |
heart_button = gr.Button("❤️ Heart") | |
delete_image_button = gr.Button("🗑️ Delete Selected Image") | |
selected_image = gr.State(None) | |
with gr.Tab("Metadata and Management"): | |
metadata_df = gr.Dataframe( | |
label="Image Metadata", | |
headers=["Filename", "Prompt", "Likes", "Dislikes", "Hearts", "Created"], | |
interactive=False | |
) | |
delete_all_button = gr.Button("🗑️ Delete All Images") | |
gr.Examples(examples=examples, inputs=prompt, outputs=[result, image_gallery, download_link, metadata_df], fn=generate, cache_examples=CACHE_EXAMPLES) | |
use_negative_prompt.change(fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, queue=False, api_name=False) | |
use_prompt_2.change(fn=lambda x: gr.update(visible=x), inputs=use_prompt_2, outputs=prompt_2, queue=False, api_name=False) | |
use_negative_prompt_2.change(fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt_2, outputs=negative_prompt_2, queue=False, api_name=False) | |
apply_refiner.change(fn=lambda x: gr.update(visible=x), inputs=apply_refiner, outputs=refiner_params, queue=False, api_name=False) | |
prompt.submit(fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False).then( | |
fn=generate, | |
inputs=[prompt, negative_prompt, prompt_2, negative_prompt_2, use_negative_prompt, use_prompt_2, use_negative_prompt_2, seed, width, height, guidance_scale_base, guidance_scale_refiner, num_inference_steps_base, num_inference_steps_refiner, apply_refiner], | |
outputs=[result, image_gallery, download_link, metadata_df] | |
) | |
run_button.click(fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False).then( | |
fn=generate, | |
inputs=[prompt, negative_prompt, prompt_2, negative_prompt_2, use_negative_prompt, use_prompt_2, use_negative_prompt_2, seed, width, height, guidance_scale_base, guidance_scale_refiner, num_inference_steps_base, num_inference_steps_refiner, apply_refiner], | |
outputs=[result, image_gallery, download_link, metadata_df] | |
) | |
image_gallery.select(fn=lambda evt: evt, inputs=[], outputs=[selected_image]) | |
like_button.click(fn=lambda x: vote(x, 'likes'), inputs=[selected_image], outputs=[image_gallery, metadata_df]) | |
dislike_button.click(fn=lambda x: vote(x, 'dislikes'), inputs=[selected_image], outputs=[image_gallery, metadata_df]) | |
heart_button.click(fn=lambda x: vote(x, 'hearts'), inputs=[selected_image], outputs=[image_gallery, metadata_df]) | |
delete_image_button.click(fn=delete_image, inputs=[selected_image], outputs=[image_gallery, metadata_df]) | |
delete_all_button.click(fn=delete_all_images, inputs=[], outputs=[image_gallery, metadata_df]) | |
demo.load(fn=lambda: (get_image_gallery(), image_metadata.values.tolist()), outputs=[image_gallery, metadata_df]) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(share=True, debug=False) |