Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import firebase_admin
|
| 3 |
+
from firebase_admin import credentials
|
| 4 |
+
from firebase_admin import firestore
|
| 5 |
+
import datetime
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
@st.experimental_singleton
|
| 10 |
+
def get_db_firestore():
|
| 11 |
+
cred = credentials.Certificate('test.json')
|
| 12 |
+
firebase_admin.initialize_app(cred, {'projectId': u'clinical-nlp-b9117',})
|
| 13 |
+
db = firestore.client()
|
| 14 |
+
return db
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
db = get_db_firestore()
|
| 18 |
+
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
|
| 19 |
+
|
| 20 |
+
def transcribe(audio):
|
| 21 |
+
text = asr(audio)["text"]
|
| 22 |
+
return text
|
| 23 |
+
|
| 24 |
+
classifier = pipeline("text-classification")
|
| 25 |
+
|
| 26 |
+
def speech_to_text(speech):
|
| 27 |
+
text = asr(speech)["text"]
|
| 28 |
+
return text
|
| 29 |
+
|
| 30 |
+
def text_to_sentiment(text):
|
| 31 |
+
sentiment = classifier(text)[0]["label"]
|
| 32 |
+
return sentiment
|
| 33 |
+
|
| 34 |
+
def upsert(text):
|
| 35 |
+
date_time =str(datetime.datetime.today())
|
| 36 |
+
doc_ref = db.collection('Text2SpeechSentimentSave').document(date_time)
|
| 37 |
+
doc_ref.set({u'firefield': 'Recognize Speech', u'first': 'https://huggingface.co/spaces/awacke1/Text2SpeechSentimentSave', u'last': text, u'born': date_time,})
|
| 38 |
+
saved = select('Text2SpeechSentimentSave', date_time)
|
| 39 |
+
# check it here: https://console.firebase.google.com/u/0/project/clinical-nlp-b9117/firestore/data/~2FStreamlitSpaces
|
| 40 |
+
return saved
|
| 41 |
+
|
| 42 |
+
def select(collection, document):
|
| 43 |
+
doc_ref = db.collection(collection).document(document)
|
| 44 |
+
doc = doc_ref.get()
|
| 45 |
+
docid = ("The id is: ", doc.id)
|
| 46 |
+
contents = ("The contents are: ", doc.to_dict())
|
| 47 |
+
return contents
|
| 48 |
+
|
| 49 |
+
def selectall(text):
|
| 50 |
+
docs = db.collection('Text2SpeechSentimentSave').stream()
|
| 51 |
+
doclist=''
|
| 52 |
+
for doc in docs:
|
| 53 |
+
#docid=doc.id
|
| 54 |
+
#dict=doc.to_dict()
|
| 55 |
+
#doclist+=doc.to_dict()
|
| 56 |
+
r=(f'{doc.id} => {doc.to_dict()}')
|
| 57 |
+
doclist += r
|
| 58 |
+
return doclist
|
| 59 |
+
|
| 60 |
+
demo = gr.Blocks()
|
| 61 |
+
|
| 62 |
+
with demo:
|
| 63 |
+
#audio_file = gr.Audio(type="filepath")
|
| 64 |
+
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
|
| 65 |
+
text = gr.Textbox()
|
| 66 |
+
label = gr.Label()
|
| 67 |
+
saved = gr.Textbox()
|
| 68 |
+
savedAll = gr.Textbox()
|
| 69 |
+
|
| 70 |
+
b1 = gr.Button("Recognize Speech")
|
| 71 |
+
b2 = gr.Button("Classify Sentiment")
|
| 72 |
+
b3 = gr.Button("Save Speech to Text")
|
| 73 |
+
b4 = gr.Button("Retrieve All")
|
| 74 |
+
|
| 75 |
+
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
| 76 |
+
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
| 77 |
+
b3.click(upsert, inputs=text, outputs=saved)
|
| 78 |
+
b4.click(selectall, inputs=text, outputs=savedAll)
|
| 79 |
+
|
| 80 |
+
demo.launch(share=True)
|