Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,137 +1,211 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import note_seq
|
| 3 |
import numpy as np
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
else:
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
if
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
)
|
| 136 |
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import spaces
|
| 5 |
+
from queue import Queue
|
| 6 |
+
from threading import Thread
|
| 7 |
+
from typing import Optional
|
| 8 |
+
from transformers import MusicgenForConditionalGeneration, MusicgenProcessor, set_seed
|
| 9 |
+
from transformers.generation.streamers import BaseStreamer
|
| 10 |
+
|
| 11 |
+
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
| 12 |
+
processor = MusicgenProcessor.from_pretrained("facebook/musicgen-small")
|
| 13 |
+
|
| 14 |
+
title = "9🌍MusicHub - Text to Music Stream Generator"
|
| 15 |
+
description = """ Facebook MusicGen-Small Model - Generate and stream music with model https://huggingface.co/facebook/musicgen-small """
|
| 16 |
+
article = """
|
| 17 |
+
## How It Works:
|
| 18 |
+
MusicGen is an auto-regressive transformer-based model, meaning generates audio codes (tokens) in a causal fashion.
|
| 19 |
+
At each decoding step, the model generates a new set of audio codes, conditional on the text input and all previous audio codes. From the
|
| 20 |
+
frame rate of the [EnCodec model](https://huggingface.co/facebook/encodec_32khz) used to decode the generated codes to audio waveform.
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class MusicgenStreamer(BaseStreamer):
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
model: MusicgenForConditionalGeneration,
|
| 28 |
+
device: Optional[str] = None,
|
| 29 |
+
play_steps: Optional[int] = 10,
|
| 30 |
+
stride: Optional[int] = None,
|
| 31 |
+
timeout: Optional[float] = None,
|
| 32 |
+
):
|
| 33 |
+
"""
|
| 34 |
+
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
|
| 35 |
+
useful for applications that benefit from acessing the generated audio in a non-blocking way (e.g. in an interactive
|
| 36 |
+
Gradio demo).
|
| 37 |
+
Parameters:
|
| 38 |
+
model (`MusicgenForConditionalGeneration`):
|
| 39 |
+
The MusicGen model used to generate the audio waveform.
|
| 40 |
+
device (`str`, *optional*):
|
| 41 |
+
The torch device on which to run the computation. If `None`, will default to the device of the model.
|
| 42 |
+
play_steps (`int`, *optional*, defaults to 10):
|
| 43 |
+
The number of generation steps with which to return the generated audio array. Using fewer steps will
|
| 44 |
+
mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
|
| 45 |
+
should be tuned to your device and latency requirements.
|
| 46 |
+
stride (`int`, *optional*):
|
| 47 |
+
The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
|
| 48 |
+
the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
|
| 49 |
+
play_steps // 6 in the audio space.
|
| 50 |
+
timeout (`int`, *optional*):
|
| 51 |
+
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
|
| 52 |
+
in `.generate()`, when it is called in a separate thread.
|
| 53 |
+
"""
|
| 54 |
+
self.decoder = model.decoder
|
| 55 |
+
self.audio_encoder = model.audio_encoder
|
| 56 |
+
self.generation_config = model.generation_config
|
| 57 |
+
self.device = device if device is not None else model.device
|
| 58 |
+
|
| 59 |
+
# variables used in the streaming process
|
| 60 |
+
self.play_steps = play_steps
|
| 61 |
+
if stride is not None:
|
| 62 |
+
self.stride = stride
|
| 63 |
+
else:
|
| 64 |
+
hop_length = np.prod(self.audio_encoder.config.upsampling_ratios)
|
| 65 |
+
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
|
| 66 |
+
self.token_cache = None
|
| 67 |
+
self.to_yield = 0
|
| 68 |
+
|
| 69 |
+
# varibles used in the thread process
|
| 70 |
+
self.audio_queue = Queue()
|
| 71 |
+
self.stop_signal = None
|
| 72 |
+
self.timeout = timeout
|
| 73 |
+
|
| 74 |
+
def apply_delay_pattern_mask(self, input_ids):
|
| 75 |
+
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
|
| 76 |
+
_, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
|
| 77 |
+
input_ids[:, :1],
|
| 78 |
+
pad_token_id=self.generation_config.decoder_start_token_id,
|
| 79 |
+
max_length=input_ids.shape[-1],
|
| 80 |
+
)
|
| 81 |
+
# apply the pattern mask to the input ids
|
| 82 |
+
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, decoder_delay_pattern_mask)
|
| 83 |
+
|
| 84 |
+
# revert the pattern delay mask by filtering the pad token id
|
| 85 |
+
input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape(
|
| 86 |
+
1, self.decoder.num_codebooks, -1
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# append the frame dimension back to the audio codes
|
| 90 |
+
input_ids = input_ids[None, ...]
|
| 91 |
+
|
| 92 |
+
# send the input_ids to the correct device
|
| 93 |
+
input_ids = input_ids.to(self.audio_encoder.device)
|
| 94 |
+
|
| 95 |
+
output_values = self.audio_encoder.decode(
|
| 96 |
+
input_ids,
|
| 97 |
+
audio_scales=[None],
|
| 98 |
+
)
|
| 99 |
+
audio_values = output_values.audio_values[0, 0]
|
| 100 |
+
return audio_values.cpu().float().numpy()
|
| 101 |
+
|
| 102 |
+
def put(self, value):
|
| 103 |
+
batch_size = value.shape[0] // self.decoder.num_codebooks
|
| 104 |
+
if batch_size > 1:
|
| 105 |
+
raise ValueError("MusicgenStreamer only supports batch size 1")
|
| 106 |
+
|
| 107 |
+
if self.token_cache is None:
|
| 108 |
+
self.token_cache = value
|
| 109 |
+
else:
|
| 110 |
+
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
|
| 111 |
+
|
| 112 |
+
if self.token_cache.shape[-1] % self.play_steps == 0:
|
| 113 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
| 114 |
+
self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
|
| 115 |
+
self.to_yield += len(audio_values) - self.to_yield - self.stride
|
| 116 |
+
|
| 117 |
+
def end(self):
|
| 118 |
+
"""Flushes any remaining cache and appends the stop symbol."""
|
| 119 |
+
if self.token_cache is not None:
|
| 120 |
+
audio_values = self.apply_delay_pattern_mask(self.token_cache)
|
| 121 |
else:
|
| 122 |
+
audio_values = np.zeros(self.to_yield)
|
| 123 |
+
|
| 124 |
+
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
|
| 125 |
+
|
| 126 |
+
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
|
| 127 |
+
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
|
| 128 |
+
self.audio_queue.put(audio, timeout=self.timeout)
|
| 129 |
+
if stream_end:
|
| 130 |
+
self.audio_queue.put(self.stop_signal, timeout=self.timeout)
|
| 131 |
+
|
| 132 |
+
def __iter__(self):
|
| 133 |
+
return self
|
| 134 |
+
|
| 135 |
+
def __next__(self):
|
| 136 |
+
value = self.audio_queue.get(timeout=self.timeout)
|
| 137 |
+
if not isinstance(value, np.ndarray) and value == self.stop_signal:
|
| 138 |
+
raise StopIteration()
|
| 139 |
+
else:
|
| 140 |
+
return value
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
sampling_rate = model.audio_encoder.config.sampling_rate
|
| 144 |
+
frame_rate = model.audio_encoder.config.frame_rate
|
| 145 |
+
|
| 146 |
+
target_dtype = np.int16
|
| 147 |
+
max_range = np.iinfo(target_dtype).max
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
@spaces.GPU
|
| 151 |
+
def generate_audio(text_prompt, audio_length_in_s=10.0, play_steps_in_s=2.0, seed=0):
|
| 152 |
+
max_new_tokens = int(frame_rate * audio_length_in_s)
|
| 153 |
+
play_steps = int(frame_rate * play_steps_in_s)
|
| 154 |
+
|
| 155 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 156 |
+
if device != model.device:
|
| 157 |
+
model.to(device)
|
| 158 |
+
if device == "cuda:0":
|
| 159 |
+
model.half()
|
| 160 |
+
|
| 161 |
+
inputs = processor(
|
| 162 |
+
text=text_prompt,
|
| 163 |
+
padding=True,
|
| 164 |
+
return_tensors="pt",
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps)
|
| 168 |
+
|
| 169 |
+
generation_kwargs = dict(
|
| 170 |
+
**inputs.to(device),
|
| 171 |
+
streamer=streamer,
|
| 172 |
+
max_new_tokens=max_new_tokens,
|
| 173 |
+
)
|
| 174 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 175 |
+
thread.start()
|
| 176 |
+
|
| 177 |
+
set_seed(seed)
|
| 178 |
+
for new_audio in streamer:
|
| 179 |
+
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
|
| 180 |
+
new_audio = (new_audio * max_range).astype(np.int16)
|
| 181 |
+
yield (sampling_rate, new_audio)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
demo = gr.Interface(
|
| 185 |
+
fn=generate_audio,
|
| 186 |
+
inputs=[
|
| 187 |
+
gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"),
|
| 188 |
+
gr.Slider(10, 30, value=15, step=5, label="Audio length in seconds"),
|
| 189 |
+
gr.Slider(0.5, 2.5, value=0.5, step=0.5, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps"),
|
| 190 |
+
gr.Slider(0, 10, value=5, step=1, label="Seed for random generations"),
|
| 191 |
+
],
|
| 192 |
+
outputs=[
|
| 193 |
+
gr.Audio(label="Generated Music", streaming=True, autoplay=True)
|
| 194 |
+
],
|
| 195 |
+
examples = [
|
| 196 |
+
["Country acoustic guitar fast line dance singer like Kenny Chesney and Garth brooks and Luke Combs and Chris Stapleton. bpm: 100", 30, 0.5, 5],
|
| 197 |
+
["Electronic Dance track with pulsating bass and high energy synths. bpm: 126", 30, 0.5, 5],
|
| 198 |
+
["Rap Beats with deep bass and snappy snares. bpm: 80", 30, 0.5, 5],
|
| 199 |
+
["Lo-Fi track with smooth beats and chill vibes. bpm: 100", 30, 0.5, 5],
|
| 200 |
+
["Global Groove track with international instruments and dance rhythms. bpm: 128", 30, 0.5, 5],
|
| 201 |
+
["Relaxing Meditation music with ambient pads and soothing melodies. bpm: 80", 30, 0.5, 5],
|
| 202 |
+
["Rave Dance track with hard-hitting beats and euphoric synths. bpm: 128", 30, 0.5, 5]
|
| 203 |
+
],
|
| 204 |
+
|
| 205 |
+
title=title,
|
| 206 |
+
description=description,
|
| 207 |
+
article=article,
|
| 208 |
+
cache_examples=False,
|
| 209 |
)
|
| 210 |
|
| 211 |
+
demo.queue().launch()
|