Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,431 Bytes
e6c79f5 edf4fe8 e6c79f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import os
import time
import json
import base64
from datetime import datetime
import numpy as np
import torch
import gradio as gr
from gradio_imageslider import ImageSlider
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, DDIMScheduler
from controlnet_aux import AnylineDetector
from compel import Compel, ReturnedEmbeddingsType
from PIL import Image
import pandas as pd
# Configuration
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
print(f"device: {device}")
print(f"dtype: {dtype}")
print(f"low memory: {LOW_MEMORY}")
# Model initialization
model = "stabilityai/stable-diffusion-xl-base-1.0"
scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler")
controlnet = ControlNetModel.from_pretrained(
"TheMistoAI/MistoLine",
torch_dtype=torch.float16,
revision="refs/pr/3",
variant="fp16",
)
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
model,
controlnet=controlnet,
torch_dtype=dtype,
variant="fp16",
use_safetensors=True,
scheduler=scheduler,
)
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
)
pipe = pipe.to(device)
anyline = AnylineDetector.from_pretrained(
"TheMistoAI/MistoLine", filename="MTEED.pth", subfolder="Anyline"
).to(device)
# Global variables for metadata and likes cache
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
LIKES_CACHE_FILE = "likes_cache.json"
def load_likes_cache():
if os.path.exists(LIKES_CACHE_FILE):
with open(LIKES_CACHE_FILE, 'r') as f:
return json.load(f)
return {}
def save_likes_cache(cache):
with open(LIKES_CACHE_FILE, 'w') as f:
json.dump(cache, f)
likes_cache = load_likes_cache()
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
def create_download_link(filename):
with open(filename, "rb") as file:
encoded_string = base64.b64encode(file.read()).decode('utf-8')
download_link = f'<a href="data:image/png;base64,{encoded_string}" download="{filename}">Download Image</a>'
return download_link
def save_image(image: Image.Image, prompt: str) -> str:
global image_metadata, likes_cache
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_prompt = ''.join(e for e in prompt if e.isalnum() or e.isspace())[:50]
filename = f"{timestamp}_{safe_prompt}.png"
image.save(filename)
new_row = pd.DataFrame({
'Filename': [filename],
'Prompt': [prompt],
'Likes': [0],
'Dislikes': [0],
'Hearts': [0],
'Created': [datetime.now()]
})
image_metadata = pd.concat([image_metadata, new_row], ignore_index=True)
likes_cache[filename] = {'likes': 0, 'dislikes': 0, 'hearts': 0}
save_likes_cache(likes_cache)
return filename
def get_image_gallery():
global image_metadata
image_files = image_metadata['Filename'].tolist()
return [(file, get_image_caption(file)) for file in image_files if os.path.exists(file)]
def get_image_caption(filename):
global likes_cache, image_metadata
if filename in likes_cache:
likes = likes_cache[filename]['likes']
dislikes = likes_cache[filename]['dislikes']
hearts = likes_cache[filename]['hearts']
prompt = image_metadata[image_metadata['Filename'] == filename]['Prompt'].values[0]
return f"{filename}\nPrompt: {prompt}\n👍 {likes} 👎 {dislikes} ❤️ {hearts}"
return filename
def delete_all_images():
global image_metadata, likes_cache
for file in image_metadata['Filename']:
if os.path.exists(file):
os.remove(file)
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
likes_cache = {}
save_likes_cache(likes_cache)
return get_image_gallery(), image_metadata.values.tolist()
def delete_image(filename):
global image_metadata, likes_cache
if filename and os.path.exists(filename):
os.remove(filename)
image_metadata = image_metadata[image_metadata['Filename'] != filename]
if filename in likes_cache:
del likes_cache[filename]
save_likes_cache(likes_cache)
return get_image_gallery(), image_metadata.values.tolist()
def vote(filename, vote_type):
global likes_cache
if filename in likes_cache:
likes_cache[filename][vote_type.lower()] += 1
save_likes_cache(likes_cache)
return get_image_gallery(), image_metadata.values.tolist()
@gr.on(queue_pred_done=True)
def predict(
input_image,
prompt,
negative_prompt,
seed,
guidance_scale=8.5,
controlnet_conditioning_scale=0.5,
strength=1.0,
controlnet_start=0.0,
controlnet_end=1.0,
guassian_sigma=2.0,
intensity_threshold=3,
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
raise gr.Error("Please upload an image.")
padded_image = pad_image(input_image).resize((1024, 1024)).convert("RGB")
conditioning, pooled = compel([prompt, negative_prompt])
generator = torch.manual_seed(seed)
last_time = time.time()
anyline_image = anyline(
padded_image,
detect_resolution=1280,
guassian_sigma=max(0.01, guassian_sigma),
intensity_threshold=intensity_threshold,
)
images = pipe(
image=padded_image,
control_image=anyline_image,
strength=strength,
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
width=1024,
height=1024,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
controlnet_start=float(controlnet_start),
controlnet_end=float(controlnet_end),
generator=generator,
num_inference_steps=30,
guidance_scale=guidance_scale,
eta=1.0,
)
print(f"Time taken: {time.time() - last_time}")
generated_image = images.images[0]
filename = save_image(generated_image, prompt)
download_link = create_download_link(filename)
return (padded_image, generated_image), padded_image, anyline_image, download_link, get_image_gallery(), image_metadata.values.tolist()
css = """
#intro {
max-width: 100%;
text-align: center;
margin: 0 auto;
}
.gradio-container {max-width: 1200px !important}
footer {visibility: hidden}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🎨 ArtForge: MistoLine ControlNet Masterpiece Gallery
Create, curate, and compete with AI-enhanced images using MistoLine ControlNet. Join our creative multiplayer experience! 🖼️🏆✨
This demo showcases the capabilities of [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLine) ControlNet with SDXL.
- SDXL Controlnet: [TheMistoAI/MistoLine](https://huggingface.co/TheMistoAI/MistoLine)
- [Anyline with Controlnet Aux](https://github.com/huggingface/controlnet_aux)
- For upscaling, see [Enhance This Demo](https://huggingface.co/spaces/radames/Enhance-This-HiDiffusion-SDXL)
""",
elem_id="intro",
)
with gr.Tab("Generate Images"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Input Image")
prompt = gr.Textbox(
label="Prompt",
info="The prompt is very important to get the desired results. Please try to describe the image as best as you can. Accepts Compel Syntax",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
)
seed = gr.Slider(
minimum=0,
maximum=2**64 - 1,
value=1415926535897932,
step=1,
label="Seed",
randomize=True,
)
with gr.Accordion(label="Advanced", open=False):
guidance_scale = gr.Slider(
minimum=0,
maximum=50,
value=8.5,
step=0.001,
label="Guidance Scale",
)
controlnet_conditioning_scale = gr.Slider(
minimum=0,
maximum=1,
step=0.001,
value=0.5,
label="ControlNet Conditioning Scale",
)
strength = gr.Slider(
minimum=0,
maximum=1,
step=0.001,
value=1,
label="Strength",
)
controlnet_start = gr.Slider(
minimum=0,
maximum=1,
step=0.001,
value=0.0,
label="ControlNet Start",
)
controlnet_end = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.001,
value=1.0,
label="ControlNet End",
)
guassian_sigma = gr.Slider(
minimum=0.01,
maximum=10.0,
step=0.1,
value=2.0,
label="(Anyline) Guassian Sigma",
)
intensity_threshold = gr.Slider(
minimum=0,
maximum=255,
step=1,
value=3,
label="(Anyline) Intensity Threshold",
)
btn = gr.Button("Generate")
with gr.Column(scale=2):
with gr.Group():
image_slider = ImageSlider(position=0.5)
with gr.Row():
padded_image = gr.Image(type="pil", label="Padded Image")
anyline_image = gr.Image(type="pil", label="Anyline Image")
download_link = gr.HTML(label="Download Generated Image")
with gr.Tab("Gallery and Voting"):
image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=4, height="auto")
with gr.Row():
like_button = gr.Button("👍 Like")
dislike_button = gr.Button("👎 Dislike")
heart_button = gr.Button("❤️ Heart")
delete_image_button = gr.Button("🗑️ Delete Selected Image")
selected_image = gr.State(None)
with gr.Tab("Metadata and Management"):
metadata_df = gr.Dataframe(
label="Image Metadata",
headers=["Filename", "Prompt", "Likes", "Dislikes", "Hearts", "Created"],
interactive=False
)
delete_all_button = gr.Button("🗑️ Delete All Images")
inputs = [
image_input,
prompt,
negative_prompt,
seed,
guidance_scale,
controlnet_conditioning_scale,
strength,
controlnet_start,
controlnet_end,
guassian_sigma,
intensity_threshold,
]
outputs = [image_slider, padded_image, anyline_image, download_link, image_gallery, metadata_df]
btn.click(fn=predict, inputs=inputs, outputs=outputs)
image_gallery.select(fn=lambda evt: evt, inputs=[], outputs=[selected_image])
like_button.click(fn=lambda x: vote(x, 'likes'), inputs=[selected_image], outputs=[image_gallery, metadata_df])
dislike_button.click(fn=lambda x: vote(x, 'dislikes'), inputs=[selected_image], outputs=[image_gallery, metadata_df])
heart_button.click(fn=lambda x: vote(x, 'hearts'), inputs=[selected_image], outputs=[image_gallery, metadata_df])
delete_image_button.click(fn=delete_image, inputs=[selected_image], outputs=[image_gallery, metadata_df])
delete_all_button.click(fn=delete_all_images, inputs=[], outputs=[image_gallery, metadata_df])
demo.load(fn=lambda: (get_image_gallery(), image_metadata.values.tolist()), outputs=[image_gallery, metadata_df])
gr.Examples(
fn=predict,
inputs=inputs,
outputs=outputs,
examples=[
[
"./examples/city.png",
"hyperrealistic surreal cityscape scene at sunset, buildings",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
13113544138610326000,
8.5,
0.481,
1.0,
0.0,
0.9,
2,
3,
],
[
"./examples/lara.jpeg",
"photography of lara croft 8k high definition award winning",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
5436236241,
8.5,
0.8,
1.0,
0.0,
0.9,
2,
3,
],
[
"./examples/cybetruck.jpeg",
"photo of tesla cybertruck futuristic car 8k high definition on a sand dune in mars, future",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
383472451451,
8.5,
0.8,
0.8,
0.0,
0.9,
2,
3,
],
[
"./examples/jesus.png",
"a photorealistic painting of Jesus Christ, 4k high definition",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
13317204146129588000,
8.5,
0.8,
0.8,
0.0,
0.9,
2,
3,
],
[
"./examples/anna-sullivan-DioLM8ViiO8-unsplash.jpg",
"A crowded stadium with enthusiastic fans watching a daytime sporting event, the stands filled with colorful attire and the sun casting a warm glow",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
5623124123512,
8.5,
0.8,
0.8,
0.0,
0.9,
2,
3,
],
[
"./examples/img_aef651cb-2919-499d-aa49-6d4e2e21a56e_1024.jpg",
"a large red flower on a black background 4k high definition",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic",
23123412341234,
8.5,
0.8,
0.8,
0.0,
0.9,
2,
3,
],
[
"./examples/huggingface.jpg",
"photo realistic huggingface human emoji costume, round, yellow, (human skin)+++ (human texture)+++",
"blurry, ugly, duplicate, poorly drawn, deformed, mosaic, emoji cartoon, drawing, pixelated",
12312353423,
15.206,
0.364,
0.8,
0.0,
0.9,
2,
3,
],
],
cache_examples=True,
)
demo.queue(concurrency_count=1, max_size=20).launch(debug=True) |