File size: 21,204 Bytes
e5e9425
fd25a82
 
 
 
e5e9425
fd25a82
 
 
 
 
 
 
 
e5e9425
fd25a82
 
 
 
 
e5e9425
fd25a82
 
 
 
 
e5e9425
fd25a82
e5e9425
 
fd25a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e9425
 
 
fd25a82
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e9425
fd25a82
e5e9425
fd25a82
 
 
e5e9425
fd25a82
 
 
 
 
 
e5e9425
fd25a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e9425
fd25a82
 
 
 
e5e9425
fd25a82
 
 
 
 
 
 
 
e5e9425
 
fd25a82
 
 
e5e9425
fd25a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ccd3ae
fd25a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ccd3ae
fd25a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e9425
fd25a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e9425
fd25a82
 
 
 
f94988e
fd25a82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5e9425
fd25a82
 
 
e5e9425
fd25a82
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import os
import json
import tempfile
import zipfile
from datetime import datetime

import gradio as gr
import numpy as np
import torch
from PIL import Image

# Program A imports
from utils import MEGABenchEvalDataLoader
from constants import *  # This is assumed to define CITATION_BUTTON_TEXT, CITATION_BUTTON_LABEL, TABLE_INTRODUCTION, LEADERBOARD_INTRODUCTION, DATA_INFO, SUBMIT_INTRODUCTION, BASE_MODEL_GROUPS, etc.

# Program B imports
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, Qwen2_5_VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
from gliner import GLiNER

# ----------------------------------------------------------------
# Combined CSS
# ----------------------------------------------------------------
current_dir = os.path.dirname(os.path.abspath(__file__))
with open(os.path.join(current_dir, "static", "css", "style.css"), "r") as f:
    base_css = f.read()
with open(os.path.join(current_dir, "static", "css", "table.css"), "r") as f:
    table_css = f.read()

css_program_b = """
  /* Program B CSS */
  .gradio-container {
    max-width: 1200px !important;
    margin: 0 auto;
    padding: 20px;
    background-color: #f8f9fa;
  }
  .tabs {
    border-radius: 8px;
    background: white;
    padding: 20px;
    box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);
  }
  .input-container, .output-container {
    background: white;
    border-radius: 8px;
    padding: 15px;
    margin: 10px 0;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
  }
  .submit-btn {
    background-color: #2d31fa !important;
    border: none !important;
    padding: 8px 20px !important;
    border-radius: 6px !important;
    color: white !important;
    transition: all 0.3s ease !important;
  }
  .submit-btn:hover {
    background-color: #1f24c7 !important;
    transform: translateY(-1px);
  }
  #output {
    height: 500px;
    overflow: auto;
    border: 1px solid #e0e0e0;
    border-radius: 6px;
    padding: 15px;
    background: #ffffff;
    font-family: 'Arial', sans-serif;
  }
  .gr-dropdown {
    border-radius: 6px !important;
    border: 1px solid #e0e0e0 !important;
  }
  .gr-image-input {
    border: 2px dashed #ccc;
    border-radius: 8px;
    padding: 20px;
    transition: all 0.3s ease;
  }
  .gr-image-input:hover {
    border-color: #2d31fa;
  }
"""
css_global = base_css + "\n" + table_css + "\n" + css_program_b

# ----------------------------------------------------------------
# Program A Global Initializations
# ----------------------------------------------------------------
default_loader = MEGABenchEvalDataLoader("./static/eval_results/Default")
si_loader = MEGABenchEvalDataLoader("./static/eval_results/SI")

# ----------------------------------------------------------------
# Program B Global Initializations
# ----------------------------------------------------------------
gliner_model = GLiNER.from_pretrained("knowledgator/modern-gliner-bi-large-v1.0")
DEFAULT_NER_LABELS = "person, organization, location, date, event"

models = {
    "Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained(
        "Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto"
    ).cuda().eval()
}
processors = {
    "Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained(
        "Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True
    )
}

user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"

# A simple metadata container for OCR results and entity information.
class TextWithMetadata(list):
    def __init__(self, *args, **kwargs):
        super().__init__(*args)
        self.original_text = kwargs.get('original_text', '')
        self.entities = kwargs.get('entities', [])

# ----------------------------------------------------------------
# UI DEFINITION (placed at the top)
# ----------------------------------------------------------------
with gr.Blocks(css=css_global) as demo:
    with gr.Tabs():
        # -------------------------
        # Tab 1: Dashboard (Program A)
        # -------------------------
        with gr.TabItem("Dashboard"):
            with gr.Tabs(elem_classes="tab-buttons") as dashboard_tabs:
                # --- MEGA-Bench Leaderboard Tab ---
                with gr.TabItem("๐Ÿ“Š MEGA-Bench"):
                    # Inject table CSS (will be updated when the table is refreshed)
                    css_style = gr.HTML(f"<style>{base_css}\n{table_css}</style>", visible=False)
                    
                    # Define captions for default vs. single-image tables
                    default_caption = ("**Table 1: MEGA-Bench full results.** The number in the parentheses is the number of tasks "
                                       "of each keyword. <br> The Core set contains $N_{\\text{core}} = 440$ tasks evaluated by "
                                       "rule-based metrics, and the Open-ended set contains $N_{\\text{open}} = 65$ tasks evaluated by a "
                                       "VLM judge (we use GPT-4o-0806). <br> Different from the results in our paper, we only use the Core "
                                       "results with CoT prompting here for clarity and compatibility with the released data. <br> "
                                       "$\\text{Overall} \\ = \\ \\frac{\\text{Core} \\ \\cdot \\ N_{\\text{core}} \\ + \\ \\text{Open-ended} "
                                       "\\ \\cdot \\ N_{\\text{open}}}{N_{\\text{core}} \\ + \\ N_{\\text{open}}}$ <br> * indicates self-reported "
                                       "results from the model authors.")
                    single_image_caption = ("**Table 2: MEGA-Bench Single-image setting results.** The number in the parentheses is the number of tasks "
                                            "in each keyword. <br> This subset contains 273 single-image tasks from the Core set and 42 single-image tasks "
                                            "from the Open-ended set. For open-source models, we drop the image input in the 1-shot demonstration example so that "
                                            "the entire query contains a single image only. <br> Compared to the default table, some models with only "
                                            "single-image support are added.")
                    
                    caption_component = gr.Markdown(
                        value=default_caption,
                        elem_classes="table-caption",
                        latex_delimiters=[{"left": "$", "right": "$", "display": False}],
                    )
                    
                    with gr.Row():
                        super_group_selector = gr.Radio(
                            choices=list(default_loader.SUPER_GROUPS.keys()),
                            label="Select a dimension to display breakdown results. We use different column colors to distinguish the overall benchmark scores and breakdown results.",
                            value=list(default_loader.SUPER_GROUPS.keys())[0]
                        )
                        model_group_selector = gr.Radio(
                            choices=list(BASE_MODEL_GROUPS.keys()),
                            label="Select a model group",
                            value="All"
                        )
                    
                    initial_headers, initial_data = default_loader.get_leaderboard_data(
                        list(default_loader.SUPER_GROUPS.keys())[0], "All"
                    )
                    data_component = gr.Dataframe(
                        value=initial_data,
                        headers=initial_headers,
                        datatype=["number", "html"] + ["number"] * (len(initial_headers) - 2),
                        interactive=True,
                        elem_classes="custom-dataframe",
                        max_height=2400,
                        column_widths=["100px", "240px"] + ["160px"] * 3 + ["210px"] * (len(initial_headers) - 5),
                    )
                    
                    with gr.Row():
                        with gr.Accordion("Citation", open=False):
                            citation_button = gr.Textbox(
                                value=CITATION_BUTTON_TEXT,
                                label=CITATION_BUTTON_LABEL,
                                elem_id="citation-button",
                                lines=10,
                            )
                    gr.Markdown(TABLE_INTRODUCTION)
                    
                    with gr.Row():
                        table_selector = gr.Radio(
                            choices=["Default", "Single Image"],
                            label="Select table to display. Default: all MEGA-Bench tasks; Single Image: single-image tasks only.",
                            value="Default"
                        )
                    
                    refresh_button = gr.Button("Refresh")
                    
                    # Wire up event handlers (functions defined below)
                    refresh_button.click(
                        fn=update_table_and_caption, 
                        inputs=[table_selector, super_group_selector, model_group_selector], 
                        outputs=[data_component, caption_component, css_style]
                    )
                    super_group_selector.change(
                        fn=update_table_and_caption, 
                        inputs=[table_selector, super_group_selector, model_group_selector], 
                        outputs=[data_component, caption_component, css_style]
                    )
                    model_group_selector.change(
                        fn=update_table_and_caption, 
                        inputs=[table_selector, super_group_selector, model_group_selector], 
                        outputs=[data_component, caption_component, css_style]
                    )
                    table_selector.change(
                        fn=update_selectors,
                        inputs=[table_selector],
                        outputs=[super_group_selector, model_group_selector]
                    ).then(
                        fn=update_table_and_caption,
                        inputs=[table_selector, super_group_selector, model_group_selector],
                        outputs=[data_component, caption_component, css_style]
                    )
                    
                # --- Introduction Tab ---
                with gr.TabItem("๐Ÿ“š Introduction"):
                    gr.Markdown(LEADERBOARD_INTRODUCTION)
                # --- Data Information Tab ---
                with gr.TabItem("๐Ÿ“ Data Information"):
                    gr.Markdown(DATA_INFO, elem_classes="markdown-text")
                # --- Submit Tab ---
                with gr.TabItem("๐Ÿš€ Submit"):
                    with gr.Row():
                        gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
        
        # -------------------------
        # Tab 2: Image Processing (Program B)
        # -------------------------
        with gr.TabItem("Image Processing"):
            # A default image is shown for context.
            gr.Image("Caracal.jpg", interactive=False)
            # It is important to create a state variable to store the OCR/NER result.
            ocr_state = gr.State()
            with gr.Tab(label="Image Input", elem_classes="tabs"):
                with gr.Row():
                    with gr.Column(elem_classes="input-container"):
                        input_img = gr.Image(label="Input Picture", elem_classes="gr-image-input")
                        model_selector = gr.Dropdown(
                            choices=list(models.keys()),
                            label="Model",
                            value="Qwen/Qwen2.5-VL-7B-Instruct",
                            elem_classes="gr-dropdown"
                        )
                        with gr.Row():
                            ner_checkbox = gr.Checkbox(label="Run Named Entity Recognition", value=False)
                            ner_labels = gr.Textbox(
                                label="NER Labels (comma-separated)", 
                                value=DEFAULT_NER_LABELS,
                                visible=False
                            )
                        submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
                    with gr.Column(elem_classes="output-container"):
                        output_text = gr.HighlightedText(label="Output Text", elem_id="output")
                # Toggle visibility of the NER labels textbox.
                ner_checkbox.change(
                    lambda x: gr.update(visible=x),
                    inputs=[ner_checkbox],
                    outputs=[ner_labels]
                )
                submit_btn.click(
                    fn=run_example,
                    inputs=[input_img, model_selector, ner_checkbox, ner_labels],
                    outputs=[output_text, ocr_state]
                )
            with gr.Row():
                filename = gr.Textbox(label="Save filename (without extension)", placeholder="Enter filename to save")
                download_btn = gr.Button("Download Image & Text", elem_classes="submit-btn")
                download_output = gr.File(label="Download")
            download_btn.click(
                fn=create_zip,
                inputs=[input_img, filename, ocr_state],
                outputs=[download_output]
            )

# ----------------------------------------------------------------
# FUNCTION DEFINITIONS
# ----------------------------------------------------------------

def update_table_and_caption(table_type, super_group, model_group):
    """
    Updates the leaderboard DataFrame, caption and CSS based on the table type and selectors.
    """
    if table_type == "Default":
        headers, data = default_loader.get_leaderboard_data(super_group, model_group)
        caption = ("**Table 1: MEGA-Bench full results.** The number in the parentheses is the number of tasks "
                   "of each keyword. <br> The Core set contains $N_{\\text{core}} = 440$ tasks evaluated by rule-based metrics, and the "
                   "Open-ended set contains $N_{\\text{open}} = 65$ tasks evaluated by a VLM judge (we use GPT-4o-0806). <br> "
                   "Different from the results in our paper, we only use the Core results with CoT prompting here for clarity and compatibility "
                   "with the released data. <br> $\\text{Overall} \\ = \\ \\frac{\\text{Core} \\ \\cdot \\ N_{\\text{core}} \\ + \\ \\text{Open-ended} "
                   "\\ \\cdot \\ N_{\\text{open}}}{N_{\\text{core}} \\ + \\ N_{\\text{open}}}$ <br> * indicates self-reported results from the model authors.")
    else:  # Single-image table
        headers, data = si_loader.get_leaderboard_data(super_group, model_group)
        caption = ("**Table 2: MEGA-Bench Single-image setting results.** The number in the parentheses is the number of tasks "
                   "in each keyword. <br> This subset contains 273 single-image tasks from the Core set and 42 single-image tasks from the Open-ended set. "
                   "For open-source models, we drop the image input in the 1-shot demonstration example so that the entire query contains a single image only. <br> "
                   "Compared to the default table, some models with only single-image support are added.")
    
    dataframe = gr.Dataframe(
        value=data,
        headers=headers,
        datatype=["number", "html"] + ["number"] * (len(headers) - 2),
        interactive=True,
        column_widths=["100px", "240px"] + ["160px"] * 3 + ["210px"] * (len(headers) - 5),
    )
    style_html = f"<style>{base_css}\n{table_css}</style>"
    return dataframe, caption, style_html

def update_selectors(table_type):
    """
    Updates the options in the radio selectors based on the selected table type.
    """
    loader = default_loader if table_type == "Default" else si_loader
    return [gr.Radio.update(choices=list(loader.SUPER_GROUPS.keys())),
            gr.Radio.update(choices=list(loader.MODEL_GROUPS.keys()))]

def array_to_image_path(image_array):
    """
    Converts a NumPy image array to a PIL Image, saves it to disk, and returns its path.
    """
    img = Image.fromarray(np.uint8(image_array))
    img.thumbnail((1024, 1024))
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    filename = f"image_{timestamp}.png"
    img.save(filename)
    return os.path.abspath(filename)

@spaces.GPU
def run_example(image, model_id="Qwen/Qwen2.5-VL-7B-Instruct", run_ner=False, ner_labels=DEFAULT_NER_LABELS):
    """
    Given an input image, uses the selected VL model to perform OCR (and optionally NER).
    Returns the highlighted text and stores the raw OCR output in state.
    """
    text_input = "Convert the image to text."
    image_path = array_to_image_path(image)
    
    model = models[model_id]
    processor = processors[model_id]
    
    prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
    image_pil = Image.fromarray(image).convert("RGB")
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image_path},
                {"type": "text", "text": text_input},
            ],
        }
    ]
    # Prepare text and vision inputs
    text_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text_full],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")
    
    # Generate model output
    generated_ids = model.generate(**inputs, max_new_tokens=1024)
    generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    ocr_text = output_text[0]
    
    if run_ner:
        ner_results = gliner_model.predict_entities(ocr_text, ner_labels.split(","), threshold=0.3)
        highlighted_text = []
        last_end = 0
        for entity in sorted(ner_results, key=lambda x: x["start"]):
            if last_end < entity["start"]:
                highlighted_text.append((ocr_text[last_end:entity["start"]], None))
            highlighted_text.append((ocr_text[entity["start"]:entity["end"]], entity["label"]))
            last_end = entity["end"]
        if last_end < len(ocr_text):
            highlighted_text.append((ocr_text[last_end:], None))
        result = TextWithMetadata(highlighted_text, original_text=ocr_text, entities=ner_results)
        return result, result  # one for display, one for state
    result = TextWithMetadata([(ocr_text, None)], original_text=ocr_text, entities=[])
    return result, result

def create_zip(image, fname, ocr_result):
    """
    Creates a zip file containing the saved image, the OCR text, and a JSON of the OCR output.
    """
    if not fname or image is None:
        return None
    try:
        if isinstance(image, np.ndarray):
            image_pil = Image.fromarray(image)
        elif isinstance(image, Image.Image):
            image_pil = image
        else:
            return None
        
        with tempfile.TemporaryDirectory() as temp_dir:
            img_path = os.path.join(temp_dir, f"{fname}.png")
            image_pil.save(img_path)
            
            original_text = ocr_result.original_text if ocr_result else ""
            txt_path = os.path.join(temp_dir, f"{fname}.txt")
            with open(txt_path, 'w', encoding='utf-8') as f:
                f.write(original_text)
            
            json_data = {
                "text": original_text,
                "entities": ocr_result.entities if ocr_result else [],
                "image_file": f"{fname}.png"
            }
            json_path = os.path.join(temp_dir, f"{fname}.json")
            with open(json_path, 'w', encoding='utf-8') as f:
                json.dump(json_data, f, indent=2, ensure_ascii=False)
            
            output_dir = "downloads"
            os.makedirs(output_dir, exist_ok=True)
            zip_path = os.path.join(output_dir, f"{fname}.zip")
            with zipfile.ZipFile(zip_path, 'w') as zipf:
                zipf.write(img_path, os.path.basename(img_path))
                zipf.write(txt_path, os.path.basename(txt_path))
                zipf.write(json_path, os.path.basename(json_path))
            return zip_path
    except Exception as e:
        print(f"Error creating zip: {str(e)}")
        return None

# ----------------------------------------------------------------
# Launch the merged Gradio app
# ----------------------------------------------------------------
if __name__ == "__main__":
    demo.queue(api_open=False)
    demo.launch(debug=True)