File size: 21,204 Bytes
e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 5ccd3ae fd25a82 5ccd3ae fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 f94988e fd25a82 e5e9425 fd25a82 e5e9425 fd25a82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import os
import json
import tempfile
import zipfile
from datetime import datetime
import gradio as gr
import numpy as np
import torch
from PIL import Image
# Program A imports
from utils import MEGABenchEvalDataLoader
from constants import * # This is assumed to define CITATION_BUTTON_TEXT, CITATION_BUTTON_LABEL, TABLE_INTRODUCTION, LEADERBOARD_INTRODUCTION, DATA_INFO, SUBMIT_INTRODUCTION, BASE_MODEL_GROUPS, etc.
# Program B imports
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, Qwen2_5_VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
from gliner import GLiNER
# ----------------------------------------------------------------
# Combined CSS
# ----------------------------------------------------------------
current_dir = os.path.dirname(os.path.abspath(__file__))
with open(os.path.join(current_dir, "static", "css", "style.css"), "r") as f:
base_css = f.read()
with open(os.path.join(current_dir, "static", "css", "table.css"), "r") as f:
table_css = f.read()
css_program_b = """
/* Program B CSS */
.gradio-container {
max-width: 1200px !important;
margin: 0 auto;
padding: 20px;
background-color: #f8f9fa;
}
.tabs {
border-radius: 8px;
background: white;
padding: 20px;
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1);
}
.input-container, .output-container {
background: white;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
}
.submit-btn {
background-color: #2d31fa !important;
border: none !important;
padding: 8px 20px !important;
border-radius: 6px !important;
color: white !important;
transition: all 0.3s ease !important;
}
.submit-btn:hover {
background-color: #1f24c7 !important;
transform: translateY(-1px);
}
#output {
height: 500px;
overflow: auto;
border: 1px solid #e0e0e0;
border-radius: 6px;
padding: 15px;
background: #ffffff;
font-family: 'Arial', sans-serif;
}
.gr-dropdown {
border-radius: 6px !important;
border: 1px solid #e0e0e0 !important;
}
.gr-image-input {
border: 2px dashed #ccc;
border-radius: 8px;
padding: 20px;
transition: all 0.3s ease;
}
.gr-image-input:hover {
border-color: #2d31fa;
}
"""
css_global = base_css + "\n" + table_css + "\n" + css_program_b
# ----------------------------------------------------------------
# Program A Global Initializations
# ----------------------------------------------------------------
default_loader = MEGABenchEvalDataLoader("./static/eval_results/Default")
si_loader = MEGABenchEvalDataLoader("./static/eval_results/SI")
# ----------------------------------------------------------------
# Program B Global Initializations
# ----------------------------------------------------------------
gliner_model = GLiNER.from_pretrained("knowledgator/modern-gliner-bi-large-v1.0")
DEFAULT_NER_LABELS = "person, organization, location, date, event"
models = {
"Qwen/Qwen2.5-VL-7B-Instruct": Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True, torch_dtype="auto"
).cuda().eval()
}
processors = {
"Qwen/Qwen2.5-VL-7B-Instruct": AutoProcessor.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct", trust_remote_code=True
)
}
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
# A simple metadata container for OCR results and entity information.
class TextWithMetadata(list):
def __init__(self, *args, **kwargs):
super().__init__(*args)
self.original_text = kwargs.get('original_text', '')
self.entities = kwargs.get('entities', [])
# ----------------------------------------------------------------
# UI DEFINITION (placed at the top)
# ----------------------------------------------------------------
with gr.Blocks(css=css_global) as demo:
with gr.Tabs():
# -------------------------
# Tab 1: Dashboard (Program A)
# -------------------------
with gr.TabItem("Dashboard"):
with gr.Tabs(elem_classes="tab-buttons") as dashboard_tabs:
# --- MEGA-Bench Leaderboard Tab ---
with gr.TabItem("๐ MEGA-Bench"):
# Inject table CSS (will be updated when the table is refreshed)
css_style = gr.HTML(f"<style>{base_css}\n{table_css}</style>", visible=False)
# Define captions for default vs. single-image tables
default_caption = ("**Table 1: MEGA-Bench full results.** The number in the parentheses is the number of tasks "
"of each keyword. <br> The Core set contains $N_{\\text{core}} = 440$ tasks evaluated by "
"rule-based metrics, and the Open-ended set contains $N_{\\text{open}} = 65$ tasks evaluated by a "
"VLM judge (we use GPT-4o-0806). <br> Different from the results in our paper, we only use the Core "
"results with CoT prompting here for clarity and compatibility with the released data. <br> "
"$\\text{Overall} \\ = \\ \\frac{\\text{Core} \\ \\cdot \\ N_{\\text{core}} \\ + \\ \\text{Open-ended} "
"\\ \\cdot \\ N_{\\text{open}}}{N_{\\text{core}} \\ + \\ N_{\\text{open}}}$ <br> * indicates self-reported "
"results from the model authors.")
single_image_caption = ("**Table 2: MEGA-Bench Single-image setting results.** The number in the parentheses is the number of tasks "
"in each keyword. <br> This subset contains 273 single-image tasks from the Core set and 42 single-image tasks "
"from the Open-ended set. For open-source models, we drop the image input in the 1-shot demonstration example so that "
"the entire query contains a single image only. <br> Compared to the default table, some models with only "
"single-image support are added.")
caption_component = gr.Markdown(
value=default_caption,
elem_classes="table-caption",
latex_delimiters=[{"left": "$", "right": "$", "display": False}],
)
with gr.Row():
super_group_selector = gr.Radio(
choices=list(default_loader.SUPER_GROUPS.keys()),
label="Select a dimension to display breakdown results. We use different column colors to distinguish the overall benchmark scores and breakdown results.",
value=list(default_loader.SUPER_GROUPS.keys())[0]
)
model_group_selector = gr.Radio(
choices=list(BASE_MODEL_GROUPS.keys()),
label="Select a model group",
value="All"
)
initial_headers, initial_data = default_loader.get_leaderboard_data(
list(default_loader.SUPER_GROUPS.keys())[0], "All"
)
data_component = gr.Dataframe(
value=initial_data,
headers=initial_headers,
datatype=["number", "html"] + ["number"] * (len(initial_headers) - 2),
interactive=True,
elem_classes="custom-dataframe",
max_height=2400,
column_widths=["100px", "240px"] + ["160px"] * 3 + ["210px"] * (len(initial_headers) - 5),
)
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
)
gr.Markdown(TABLE_INTRODUCTION)
with gr.Row():
table_selector = gr.Radio(
choices=["Default", "Single Image"],
label="Select table to display. Default: all MEGA-Bench tasks; Single Image: single-image tasks only.",
value="Default"
)
refresh_button = gr.Button("Refresh")
# Wire up event handlers (functions defined below)
refresh_button.click(
fn=update_table_and_caption,
inputs=[table_selector, super_group_selector, model_group_selector],
outputs=[data_component, caption_component, css_style]
)
super_group_selector.change(
fn=update_table_and_caption,
inputs=[table_selector, super_group_selector, model_group_selector],
outputs=[data_component, caption_component, css_style]
)
model_group_selector.change(
fn=update_table_and_caption,
inputs=[table_selector, super_group_selector, model_group_selector],
outputs=[data_component, caption_component, css_style]
)
table_selector.change(
fn=update_selectors,
inputs=[table_selector],
outputs=[super_group_selector, model_group_selector]
).then(
fn=update_table_and_caption,
inputs=[table_selector, super_group_selector, model_group_selector],
outputs=[data_component, caption_component, css_style]
)
# --- Introduction Tab ---
with gr.TabItem("๐ Introduction"):
gr.Markdown(LEADERBOARD_INTRODUCTION)
# --- Data Information Tab ---
with gr.TabItem("๐ Data Information"):
gr.Markdown(DATA_INFO, elem_classes="markdown-text")
# --- Submit Tab ---
with gr.TabItem("๐ Submit"):
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
# -------------------------
# Tab 2: Image Processing (Program B)
# -------------------------
with gr.TabItem("Image Processing"):
# A default image is shown for context.
gr.Image("Caracal.jpg", interactive=False)
# It is important to create a state variable to store the OCR/NER result.
ocr_state = gr.State()
with gr.Tab(label="Image Input", elem_classes="tabs"):
with gr.Row():
with gr.Column(elem_classes="input-container"):
input_img = gr.Image(label="Input Picture", elem_classes="gr-image-input")
model_selector = gr.Dropdown(
choices=list(models.keys()),
label="Model",
value="Qwen/Qwen2.5-VL-7B-Instruct",
elem_classes="gr-dropdown"
)
with gr.Row():
ner_checkbox = gr.Checkbox(label="Run Named Entity Recognition", value=False)
ner_labels = gr.Textbox(
label="NER Labels (comma-separated)",
value=DEFAULT_NER_LABELS,
visible=False
)
submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
with gr.Column(elem_classes="output-container"):
output_text = gr.HighlightedText(label="Output Text", elem_id="output")
# Toggle visibility of the NER labels textbox.
ner_checkbox.change(
lambda x: gr.update(visible=x),
inputs=[ner_checkbox],
outputs=[ner_labels]
)
submit_btn.click(
fn=run_example,
inputs=[input_img, model_selector, ner_checkbox, ner_labels],
outputs=[output_text, ocr_state]
)
with gr.Row():
filename = gr.Textbox(label="Save filename (without extension)", placeholder="Enter filename to save")
download_btn = gr.Button("Download Image & Text", elem_classes="submit-btn")
download_output = gr.File(label="Download")
download_btn.click(
fn=create_zip,
inputs=[input_img, filename, ocr_state],
outputs=[download_output]
)
# ----------------------------------------------------------------
# FUNCTION DEFINITIONS
# ----------------------------------------------------------------
def update_table_and_caption(table_type, super_group, model_group):
"""
Updates the leaderboard DataFrame, caption and CSS based on the table type and selectors.
"""
if table_type == "Default":
headers, data = default_loader.get_leaderboard_data(super_group, model_group)
caption = ("**Table 1: MEGA-Bench full results.** The number in the parentheses is the number of tasks "
"of each keyword. <br> The Core set contains $N_{\\text{core}} = 440$ tasks evaluated by rule-based metrics, and the "
"Open-ended set contains $N_{\\text{open}} = 65$ tasks evaluated by a VLM judge (we use GPT-4o-0806). <br> "
"Different from the results in our paper, we only use the Core results with CoT prompting here for clarity and compatibility "
"with the released data. <br> $\\text{Overall} \\ = \\ \\frac{\\text{Core} \\ \\cdot \\ N_{\\text{core}} \\ + \\ \\text{Open-ended} "
"\\ \\cdot \\ N_{\\text{open}}}{N_{\\text{core}} \\ + \\ N_{\\text{open}}}$ <br> * indicates self-reported results from the model authors.")
else: # Single-image table
headers, data = si_loader.get_leaderboard_data(super_group, model_group)
caption = ("**Table 2: MEGA-Bench Single-image setting results.** The number in the parentheses is the number of tasks "
"in each keyword. <br> This subset contains 273 single-image tasks from the Core set and 42 single-image tasks from the Open-ended set. "
"For open-source models, we drop the image input in the 1-shot demonstration example so that the entire query contains a single image only. <br> "
"Compared to the default table, some models with only single-image support are added.")
dataframe = gr.Dataframe(
value=data,
headers=headers,
datatype=["number", "html"] + ["number"] * (len(headers) - 2),
interactive=True,
column_widths=["100px", "240px"] + ["160px"] * 3 + ["210px"] * (len(headers) - 5),
)
style_html = f"<style>{base_css}\n{table_css}</style>"
return dataframe, caption, style_html
def update_selectors(table_type):
"""
Updates the options in the radio selectors based on the selected table type.
"""
loader = default_loader if table_type == "Default" else si_loader
return [gr.Radio.update(choices=list(loader.SUPER_GROUPS.keys())),
gr.Radio.update(choices=list(loader.MODEL_GROUPS.keys()))]
def array_to_image_path(image_array):
"""
Converts a NumPy image array to a PIL Image, saves it to disk, and returns its path.
"""
img = Image.fromarray(np.uint8(image_array))
img.thumbnail((1024, 1024))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
img.save(filename)
return os.path.abspath(filename)
@spaces.GPU
def run_example(image, model_id="Qwen/Qwen2.5-VL-7B-Instruct", run_ner=False, ner_labels=DEFAULT_NER_LABELS):
"""
Given an input image, uses the selected VL model to perform OCR (and optionally NER).
Returns the highlighted text and stores the raw OCR output in state.
"""
text_input = "Convert the image to text."
image_path = array_to_image_path(image)
model = models[model_id]
processor = processors[model_id]
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
image_pil = Image.fromarray(image).convert("RGB")
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image_path},
{"type": "text", "text": text_input},
],
}
]
# Prepare text and vision inputs
text_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text_full],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Generate model output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
ocr_text = output_text[0]
if run_ner:
ner_results = gliner_model.predict_entities(ocr_text, ner_labels.split(","), threshold=0.3)
highlighted_text = []
last_end = 0
for entity in sorted(ner_results, key=lambda x: x["start"]):
if last_end < entity["start"]:
highlighted_text.append((ocr_text[last_end:entity["start"]], None))
highlighted_text.append((ocr_text[entity["start"]:entity["end"]], entity["label"]))
last_end = entity["end"]
if last_end < len(ocr_text):
highlighted_text.append((ocr_text[last_end:], None))
result = TextWithMetadata(highlighted_text, original_text=ocr_text, entities=ner_results)
return result, result # one for display, one for state
result = TextWithMetadata([(ocr_text, None)], original_text=ocr_text, entities=[])
return result, result
def create_zip(image, fname, ocr_result):
"""
Creates a zip file containing the saved image, the OCR text, and a JSON of the OCR output.
"""
if not fname or image is None:
return None
try:
if isinstance(image, np.ndarray):
image_pil = Image.fromarray(image)
elif isinstance(image, Image.Image):
image_pil = image
else:
return None
with tempfile.TemporaryDirectory() as temp_dir:
img_path = os.path.join(temp_dir, f"{fname}.png")
image_pil.save(img_path)
original_text = ocr_result.original_text if ocr_result else ""
txt_path = os.path.join(temp_dir, f"{fname}.txt")
with open(txt_path, 'w', encoding='utf-8') as f:
f.write(original_text)
json_data = {
"text": original_text,
"entities": ocr_result.entities if ocr_result else [],
"image_file": f"{fname}.png"
}
json_path = os.path.join(temp_dir, f"{fname}.json")
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(json_data, f, indent=2, ensure_ascii=False)
output_dir = "downloads"
os.makedirs(output_dir, exist_ok=True)
zip_path = os.path.join(output_dir, f"{fname}.zip")
with zipfile.ZipFile(zip_path, 'w') as zipf:
zipf.write(img_path, os.path.basename(img_path))
zipf.write(txt_path, os.path.basename(txt_path))
zipf.write(json_path, os.path.basename(json_path))
return zip_path
except Exception as e:
print(f"Error creating zip: {str(e)}")
return None
# ----------------------------------------------------------------
# Launch the merged Gradio app
# ----------------------------------------------------------------
if __name__ == "__main__":
demo.queue(api_open=False)
demo.launch(debug=True)
|