import os import gradio as gr from transformers import AutoModel, AutoTokenizer def process_models(model_name, save_dir, additional_models): log_lines = [] # Process primary model log_lines.append(f"🚀 Loading model: **{model_name}**") try: model = AutoModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) model_save_path = os.path.join(save_dir, model_name.replace("/", "_")) os.makedirs(model_save_path, exist_ok=True) model.save_pretrained(model_save_path) log_lines.append(f"✅ Saved **{model_name}** to `{model_save_path}`") except Exception as e: log_lines.append(f"❌ Error with **{model_name}**: {e}") # Process additional models if any if additional_models: for m in additional_models: log_lines.append(f"🚀 Loading model: **{m}**") try: model = AutoModel.from_pretrained(m) tokenizer = AutoTokenizer.from_pretrained(m) model_save_path = os.path.join(save_dir, m.replace("/", "_")) os.makedirs(model_save_path, exist_ok=True) model.save_pretrained(model_save_path) log_lines.append(f"✅ Saved **{m}** to `{model_save_path}`") except Exception as e: log_lines.append(f"❌ Error with **{m}**: {e}") return "\n".join(log_lines) # Mermaid glossary: a one-line flow summary of our UI actions. mermaid_glossary = """graph LR A[🚀 Model Input] --> B[Load Model] B --> C[💾 Save Model] D[🧩 Additional Models] --> B """