awacke1's picture
Create app.py
0fa951f verified
raw
history blame
19.6 kB
import base64
import cv2
import glob
import json
import math
import os
import pytz
import random
import re
import requests
import streamlit as st
import streamlit.components.v1 as components
import textract
import time
import zipfile
from concurrent.futures import ThreadPoolExecutor
from tqdm import tqdm
import concurrent
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from datetime import datetime
from dotenv import load_dotenv
from gradio_client import Client, handle_file
from huggingface_hub import InferenceClient
from io import BytesIO
from moviepy import VideoFileClip
from PIL import Image
from PyPDF2 import PdfReader
from templates import bot_template, css, user_template
from urllib.parse import quote
from xml.etree import ElementTree as ET
import openai
from openai import OpenAI
import pandas as pd
# 1. Configuration
Site_Name = 'Scholarly-Article-Document-Search-With-Memory'
title = "🔬🧠ScienceBrain.AI"
helpURL = 'https://huggingface.co/awacke1'
bugURL = 'https://huggingface.co/spaces/awacke1'
icons = Image.open("icons.ico")
st.set_page_config(
page_title=title,
page_icon=icons,
layout="wide",
initial_sidebar_state="auto",
menu_items={'Get Help': helpURL, 'Report a bug': bugURL, 'About': title}
)
# API Configuration
API_KEY = os.getenv('API_KEY')
HF_KEY = os.getenv('HF_KEY')
headers = {"Authorization": f"Bearer {HF_KEY}", "Content-Type": "application/json"}
key = os.getenv('OPENAI_API_KEY')
client = OpenAI(api_key=key, organization=os.getenv('OPENAI_ORG_ID'))
MODEL = "gpt-4o-2024-05-13"
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = MODEL
if "messages" not in st.session_state:
st.session_state.messages = []
if st.button("Clear Session"):
st.session_state.messages = []
# Sidebar Options
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
# HTML5 Speech Synthesis
@st.cache_resource
def SpeechSynthesis(result):
documentHTML5 = '''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}
</script>
</head>
<body>
<h1>🔊 Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">
'''
documentHTML5 += result + '''
</textarea>
<br>
<button onclick="readAloud()">🔊 Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=300)
# File Naming and Saving
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:240]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def create_and_save_file(content, file_type="md", prompt=None, is_image=False, should_save=True):
if not should_save:
return None
filename = generate_filename(prompt if prompt else content, file_type)
with open(filename, "w", encoding="utf-8") as f:
if is_image:
f.write(content)
else:
f.write(prompt + "\n\n" + content if prompt else content)
return filename
# Text Processing
def process_text(text_input):
if text_input:
st.session_state.messages.append({"role": "user", "content": text_input})
with st.chat_message("user"):
st.markdown(text_input)
with st.chat_message("assistant"):
completion = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages],
stream=False
)
response = completion.choices[0].message.content
st.markdown(response)
filename = generate_filename(text_input, "md")
create_and_save_file(response, "md", text_input, should_save=should_save)
st.session_state.messages.append({"role": "assistant", "content": response})
# Audio Processing
def process_audio(audio_input, text_input=''):
if audio_input:
audio_bytes = audio_input.read() if not isinstance(audio_input, str) else open(audio_input, "rb").read()
with st.spinner("Transcribing audio..."):
transcription = client.audio.transcriptions.create(model="whisper-1", file=BytesIO(audio_bytes))
st.session_state.messages.append({"role": "user", "content": transcription.text})
with st.chat_message("user"):
st.markdown(transcription.text)
with st.chat_message("assistant"):
completion = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[{"role": "user", "content": text_input + "\n\nTranscription: " + transcription.text}]
)
response = completion.choices[0].message.content
st.markdown(response)
filename = generate_filename(transcription.text, "md")
create_and_save_file(response, "md", text_input, should_save=should_save)
st.session_state.messages.append({"role": "assistant", "content": response})
# Image Processing
def process_image(image_input, user_prompt):
if isinstance(image_input, str):
with open(image_input, "rb") as image_file:
image_bytes = image_file.read()
else:
image_bytes = image_input.read()
base64_image = base64.b64encode(image_bytes).decode("utf-8")
response = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
]}
],
temperature=0.0
)
image_response = response.choices[0].message.content
filename = generate_filename(user_prompt, "md")
create_and_save_file(image_response, "md", user_prompt, should_save=should_save)
return image_response
# Video Processing
def save_video(video_file):
with open(video_file.name, "wb") as f:
f.write(video_file.getbuffer())
return video_file.name
def process_video(video_path, seconds_per_frame=2):
base64Frames = []
base_video_path, _ = os.path.splitext(video_path)
video = cv2.VideoCapture(video_path)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = video.get(cv2.CAP_PROP_FPS)
frames_to_skip = int(fps * seconds_per_frame)
curr_frame = 0
while curr_frame < total_frames - 1:
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
success, frame = video.read()
if not success:
break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
video.release()
audio_path = f"{base_video_path}.mp3"
try:
clip = VideoFileClip(video_path)
clip.audio.write_audiofile(audio_path, bitrate="32k")
clip.audio.close()
clip.close()
except:
st.write('No audio track found.')
return base64Frames, audio_path
def process_audio_and_video(video_input):
if video_input:
video_path = save_video(video_input)
with st.spinner("Extracting frames and audio..."):
base64Frames, audio_path = process_video(video_path)
with st.spinner("Transcribing video audio..."):
with open(video_path, "rb") as video_file:
transcript = client.audio.transcriptions.create(model="whisper-1", file=video_file).text
with st.chat_message("user"):
st.markdown(f"Video Transcription: {transcript}")
with st.chat_message("assistant"):
response = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "Summarize the video and its transcript in Markdown."},
{"role": "user", "content": [
"Video frames:", *map(lambda x: {"type": "image_url", "image_url": {"url": f"data:image/jpg;base64,{x}"}}, base64Frames),
{"type": "text", "text": f"Transcription: {transcript}"}
]}
]
)
result = response.choices[0].message.content
st.markdown(result)
filename = generate_filename(transcript or "video_summary", "md")
create_and_save_file(result, "md", "Video summary", should_save=should_save)
# RAG PDF Gallery
def extract_text_from_pdf(pdf_path):
text = ""
try:
with open(pdf_path, "rb") as f:
reader = PdfReader(f)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text
except Exception as e:
st.error(f"Error reading {pdf_path}: {e}")
return text
def generate_questions(pdf_path):
text = extract_text_from_pdf(pdf_path)
response = client.chat.completions.create(
model="gpt-4o-2024-05-13",
messages=[{"role": "user", "content": f"Generate a question that can only be answered from this document:\n{text[:2000]}"}]
)
return response.choices[0].message.content
def upload_single_pdf(file_path, vector_store_id):
file_name = os.path.basename(file_path)
try:
file_response = client.files.create(file=open(file_path, 'rb'), purpose="assistants")
attach_response = client.vector_stores.files.create(
vector_store_id=vector_store_id,
file_id=file_response.id
)
return {"file": file_name, "status": "success"}
except Exception as e:
st.error(f"Error with {file_name}: {str(e)}")
return {"file": file_name, "status": "failed", "error": str(e)}
def upload_pdf_files_to_vector_store(vector_store_id, pdf_files):
stats = {"total_files": len(pdf_files), "successful_uploads": 0, "failed_uploads": 0, "errors": []}
with ThreadPoolExecutor(max_workers=10) as executor:
futures = {executor.submit(upload_single_pdf, file_path, vector_store_id): file_path for file_path in pdf_files}
for future in tqdm(concurrent.futures.as_completed(futures), total=len(pdf_files)):
result = future.result()
if result["status"] == "success":
stats["successful_uploads"] += 1
else:
stats["failed_uploads"] += 1
stats["errors"].append(result)
return stats
def create_vector_store(store_name):
try:
vector_store = client.vector_stores.create(name=store_name)
return {"id": vector_store.id, "name": vector_store.name, "created_at": vector_store.created_at, "file_count": vector_store.file_counts.completed}
except Exception as e:
st.error(f"Error creating vector store: {e}")
return {}
def process_rag_query(query, vector_store_id):
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": query}],
tools=[{"type": "file_search", "file_search": {"vector_store_ids": [vector_store_id]}}],
tool_choice="auto"
)
return response.choices[0].message.content, response.choices[0].tool_calls if response.choices[0].tool_calls else []
def evaluate_rag_performance(questions_dict, vector_store_id, k=5):
total_queries = len(questions_dict)
correct_retrievals_at_k = 0
reciprocal_ranks = []
average_precisions = []
for filename, query in questions_dict.items():
expected_filename = filename
response, tool_calls = process_rag_query(query, vector_store_id)
if tool_calls and tool_calls[0].function.name == "file_search":
search_results = json.loads(tool_calls[0].function.arguments).get("search_results", [])
retrieved_files = [result["file"]["filename"] for result in search_results[:k]]
if expected_filename in retrieved_files:
rank = retrieved_files.index(expected_filename) + 1
correct_retrievals_at_k += 1
reciprocal_ranks.append(1 / rank)
precisions = [1 if f == expected_filename else 0 for f in retrieved_files[:rank]]
average_precisions.append(sum(precisions) / len(precisions))
else:
reciprocal_ranks.append(0)
average_precisions.append(0)
else:
reciprocal_ranks.append(0)
average_precisions.append(0)
recall_at_k = correct_retrievals_at_k / total_queries
precision_at_k = recall_at_k
mrr = sum(reciprocal_ranks) / total_queries
map_score = sum(average_precisions) / total_queries
return {"recall@k": recall_at_k, "precision@k": precision_at_k, "mrr": mrr, "map": map_score}
def rag_pdf_gallery():
st.subheader("📚 RAG PDF Gallery")
pdf_files = st.file_uploader("Upload PDFs", type=["pdf"], accept_multiple_files=True)
if pdf_files:
# Save uploaded PDFs locally
local_pdf_paths = []
for pdf in pdf_files:
pdf_path = f"temp_{pdf.name}"
with open(pdf_path, "wb") as f:
f.write(pdf.read())
local_pdf_paths.append(pdf_path)
# Generate evaluation questions
with st.spinner("Generating evaluation questions..."):
questions_dict = {os.path.basename(pdf_path): generate_questions(pdf_path) for pdf_path in local_pdf_paths}
st.write("Generated Questions:", questions_dict)
# Create and populate vector store
store_name = "rag_pdf_gallery_store"
with st.spinner("Creating vector store..."):
vector_store_details = create_vector_store(store_name)
upload_stats = upload_pdf_files_to_vector_store(vector_store_details["id"], local_pdf_paths)
st.write("Upload Stats:", upload_stats)
# Query interface
query = st.text_input("Ask a question about the PDFs:")
if query:
with st.spinner("Processing RAG query..."):
response, tool_calls = process_rag_query(query, vector_store_details["id"])
st.markdown("**Response:**")
st.markdown(response)
if tool_calls:
st.markdown("**Retrieved Chunks:**")
search_results = json.loads(tool_calls[0].function.arguments).get("search_results", [])
for result in search_results:
st.write(f"- File: {result['file']['filename']}, Score: {result['score']}")
# Evaluate performance
if st.button("Evaluate RAG Performance"):
with st.spinner("Evaluating performance..."):
metrics = evaluate_rag_performance(questions_dict, vector_store_details["id"])
st.write("Evaluation Metrics:", metrics)
# Cleanup
for pdf_path in local_pdf_paths:
os.remove(pdf_path)
# File Sidebar
def FileSidebar():
st.sidebar.title("File Operations")
file_types = st.sidebar.multiselect("Filter by type", [".md", ".wav", ".png", ".mp4", ".mp3"], default=[".md"])
all_files = [f for f in glob.glob("*.*") if os.path.splitext(f)[1] in file_types and len(os.path.splitext(f)[0]) >= 10]
all_files.sort(key=lambda x: os.path.getmtime(x), reverse=True)
if st.sidebar.button("🗑 Delete All Filtered"):
for file in all_files:
os.remove(file)
st.rerun()
@st.cache_resource
def create_zip_of_files(files):
zip_name = "files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
@st.cache_resource
def get_zip_download_link(zip_file):
with open(zip_file, 'rb') as f:
data = f.read()
b64 = base64.b64encode(data).decode()
return f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
if st.sidebar.button("⬇️ Download All Filtered"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
for file in all_files:
col1, col2, col3 = st.sidebar.columns([1, 6, 1])
with col1:
if st.button("🌐", key=f"view_{file}"):
with open(file, "r", encoding="utf-8") as f:
content = f.read()
st.markdown(content)
SpeechSynthesis(content)
with col2:
st.write(file)
with col3:
if st.button("🗑", key=f"delete_{file}"):
os.remove(file)
st.rerun()
# Main Function
def main():
st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, Video & RAG")
model_options = ["gpt-4o-2024-05-13", "gpt-3.5-turbo", "gpt-4o-mini"]
selected_model = st.selectbox("Select GPT Model", model_options, index=0)
st.session_state["openai_model"] = selected_model
option = st.selectbox("Select Input Type", ("Text", "Image", "Audio", "Video", "RAG PDF Gallery"))
if option == "Text":
text_input = st.text_input("Enter your text:")
if text_input:
with st.spinner("Processing..."):
process_text(text_input)
elif option == "Image":
default_prompt = "Describe this image and list ten facts in a markdown outline with emojis."
text_input = st.text_input("Image Prompt:", value=default_prompt)
image_input = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
if image_input and text_input:
with st.spinner("Processing..."):
image_response = process_image(image_input, text_input)
with st.chat_message("ai", avatar="🦖"):
st.markdown(image_response)
elif option == "Audio":
default_prompt = "Summarize this audio transcription in Markdown."
text_input = st.text_input("Audio Prompt:", value=default_prompt)
audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
if audio_input and text_input:
with st.spinner("Processing..."):
process_audio(audio_input, text_input)
elif option == "Video":
default_prompt = "Summarize this video and its transcription in Markdown."
text_input = st.text_input("Video Prompt:", value=default_prompt)
video_input = st.file_uploader("Upload a video file", type=["mp4"])
if video_input and text_input:
with st.spinner("Processing..."):
process_audio_and_video(video_input)
elif option == "RAG PDF Gallery":
rag_pdf_gallery()
# Chat History and Display
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
process_text(prompt)
FileSidebar()
main()