Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from openai import OpenAI
|
| 3 |
+
import os
|
| 4 |
+
import base64
|
| 5 |
+
import cv2
|
| 6 |
+
from moviepy.editor import VideoFileClip
|
| 7 |
+
|
| 8 |
+
# Set the API key and model name
|
| 9 |
+
MODEL = "gpt-4o"
|
| 10 |
+
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY", "<your OpenAI API key if not set as an env var>"))
|
| 11 |
+
|
| 12 |
+
def process_text():
|
| 13 |
+
text_input = st.text_input("Enter your text:")
|
| 14 |
+
if text_input:
|
| 15 |
+
completion = client.chat.completions.create(
|
| 16 |
+
model=MODEL,
|
| 17 |
+
messages=[
|
| 18 |
+
{"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"},
|
| 19 |
+
{"role": "user", "content": f"Hello! Could you solve {text_input}?"}
|
| 20 |
+
]
|
| 21 |
+
)
|
| 22 |
+
st.write("Assistant: " + completion.choices[0].message.content)
|
| 23 |
+
|
| 24 |
+
def process_image(image_input):
|
| 25 |
+
if image_input:
|
| 26 |
+
base64_image = base64.b64encode(image_input.read()).decode("utf-8")
|
| 27 |
+
response = client.chat.completions.create(
|
| 28 |
+
model=MODEL,
|
| 29 |
+
messages=[
|
| 30 |
+
{"role": "system", "content": "You are a helpful assistant that responds in Markdown. Help me with my math homework!"},
|
| 31 |
+
{"role": "user", "content": [
|
| 32 |
+
{"type": "text", "text": "What's the area of the triangle?"},
|
| 33 |
+
{"type": "image_url", "image_url": {
|
| 34 |
+
"url": f"data:image/png;base64,{base64_image}"}
|
| 35 |
+
}
|
| 36 |
+
]}
|
| 37 |
+
],
|
| 38 |
+
temperature=0.0,
|
| 39 |
+
)
|
| 40 |
+
st.markdown(response.choices[0].message.content)
|
| 41 |
+
|
| 42 |
+
def process_audio(audio_input):
|
| 43 |
+
if audio_input:
|
| 44 |
+
transcription = client.audio.transcriptions.create(
|
| 45 |
+
model="whisper-1",
|
| 46 |
+
file=audio_input,
|
| 47 |
+
)
|
| 48 |
+
response = client.chat.completions.create(
|
| 49 |
+
model=MODEL,
|
| 50 |
+
messages=[
|
| 51 |
+
{"role": "system", "content": "You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."},
|
| 52 |
+
{"role": "user", "content": [
|
| 53 |
+
{"type": "text", "text": f"The audio transcription is: {transcription.text}"}
|
| 54 |
+
]},
|
| 55 |
+
],
|
| 56 |
+
temperature=0,
|
| 57 |
+
)
|
| 58 |
+
st.markdown(response.choices[0].message.content)
|
| 59 |
+
|
| 60 |
+
def process_video(video_input):
|
| 61 |
+
if video_input:
|
| 62 |
+
base64Frames, audio_path = process_video_frames(video_input)
|
| 63 |
+
transcription = client.audio.transcriptions.create(
|
| 64 |
+
model="whisper-1",
|
| 65 |
+
file=open(audio_path, "rb"),
|
| 66 |
+
)
|
| 67 |
+
response = client.chat.completions.create(
|
| 68 |
+
model=MODEL,
|
| 69 |
+
messages=[
|
| 70 |
+
{"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"},
|
| 71 |
+
{"role": "user", "content": [
|
| 72 |
+
"These are the frames from the video.",
|
| 73 |
+
*map(lambda x: {"type": "image_url",
|
| 74 |
+
"image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
|
| 75 |
+
{"type": "text", "text": f"The audio transcription is: {transcription.text}"}
|
| 76 |
+
]},
|
| 77 |
+
],
|
| 78 |
+
temperature=0,
|
| 79 |
+
)
|
| 80 |
+
st.markdown(response.choices[0].message.content)
|
| 81 |
+
|
| 82 |
+
def process_video_frames(video_path, seconds_per_frame=2):
|
| 83 |
+
base64Frames = []
|
| 84 |
+
base_video_path, _ = os.path.splitext(video_path.name)
|
| 85 |
+
video = cv2.VideoCapture(video_path.name)
|
| 86 |
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 87 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
| 88 |
+
frames_to_skip = int(fps * seconds_per_frame)
|
| 89 |
+
curr_frame = 0
|
| 90 |
+
while curr_frame < total_frames - 1:
|
| 91 |
+
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
| 92 |
+
success, frame = video.read()
|
| 93 |
+
if not success:
|
| 94 |
+
break
|
| 95 |
+
_, buffer = cv2.imencode(".jpg", frame)
|
| 96 |
+
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
| 97 |
+
curr_frame += frames_to_skip
|
| 98 |
+
video.release()
|
| 99 |
+
audio_path = f"{base_video_path}.mp3"
|
| 100 |
+
clip = VideoFileClip(video_path.name)
|
| 101 |
+
clip.audio.write_audiofile(audio_path, bitrate="32k")
|
| 102 |
+
clip.audio.close()
|
| 103 |
+
clip.close()
|
| 104 |
+
return base64Frames, audio_path
|
| 105 |
+
|
| 106 |
+
def main():
|
| 107 |
+
st.title("Omni Demo")
|
| 108 |
+
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
|
| 109 |
+
if option == "Text":
|
| 110 |
+
process_text()
|
| 111 |
+
elif option == "Image":
|
| 112 |
+
image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
| 113 |
+
process_image(image_input)
|
| 114 |
+
elif option == "Audio":
|
| 115 |
+
audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
|
| 116 |
+
process_audio(audio_input)
|
| 117 |
+
elif option == "Video":
|
| 118 |
+
video_input = st.file_uploader("Upload a video file", type=["mp4"])
|
| 119 |
+
process_video(video_input)
|
| 120 |
+
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
main()
|