import streamlit as st import pandas as pd import numpy as np import time import random from PIL import Image # Additional imports for CoTracker3 Demo import torch import imageio.v3 as iio import matplotlib.pyplot as plt import colorsys import tempfile import cv2 import os # Set up the page configuration st.set_page_config( page_title="Streamlit Super Fun Guide 🎈", page_icon="🎈", layout="wide", initial_sidebar_state="expanded", ) # Add a header with an emoji st.title("Welcome to the Streamlit Super Fun Guide 🎉") # Add a limerick st.write(""" There once was a coder so bright, Who coded with all of their might. With Streamlit's delight, They coded all night, And apps popped up left and right! """) # Add a wise quote st.write("> “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler") # Sidebar navigation st.sidebar.title("Navigation 🧭") options = st.sidebar.radio("Go to", [ "Introduction 🚀", "Upload Media 📁", "Animated Charts 📊", "Caching Demo 🗃️", "Query Parameters 🔍", "Character Gallery 🐾", "CoTracker3 Demo 🕵️‍♂️" ]) # Introduction Page if options == "Introduction 🚀": st.header("Introduction 🚀") st.write("Hello there 👋") st.write("Thanks for stopping by! Let's embark on a fun journey to learn Streamlit together!") st.write("Here's a joke to start with:") st.write("> Why did the programmer quit his job? Because he didn't get arrays! 😂") st.image("https://media.giphy.com/media/3oEjI6SIIHBdRxXI40/giphy.gif") # Upload Media Page elif options == "Upload Media 📁": st.header("Upload Media Files 📁") st.write("You can upload images, videos, and audio files here, and we'll display them in galleries!") uploaded_files = st.file_uploader("Choose media files", accept_multiple_files=True, type=["png", "jpg", "jpeg", "mp4", "mp3", "wav"]) if uploaded_files: images = [] videos = [] audios = [] for uploaded_file in uploaded_files: if uploaded_file.type.startswith("image/"): images.append(uploaded_file) elif uploaded_file.type.startswith("video/"): videos.append(uploaded_file) elif uploaded_file.type.startswith("audio/"): audios.append(uploaded_file) if images: st.subheader("Image Gallery 🖼️") cols = st.columns(3) for idx, img in enumerate(images): with cols[idx % 3]: st.image(img, use_column_width=True) if videos: st.subheader("Video Gallery 🎥") for vid in videos: st.video(vid) if audios: st.subheader("Audio Gallery 🎵") for aud in audios: st.audio(aud) # Animated Charts Page elif options == "Animated Charts 📊": st.header("Animated Charts 📊") st.write("Watch the data come alive with live-updating charts!") # Live-updating line chart progress_bar = st.progress(0) status_text = st.empty() chart = st.line_chart(np.random.randn(10, 2)) for i in range(100): new_rows = np.random.randn(1, 2) status_text.text(f"Iteration {i+1}") chart.add_rows(new_rows) progress_bar.progress((i + 1) % 100) time.sleep(0.1) st.success("Animation Complete! 🎉") # Caching Demo Page elif options == "Caching Demo 🗃️": st.header("Caching Demo 🗃️") st.write("This demonstrates how caching can speed up your app.") @st.cache_data def expensive_computation(n): time.sleep(2) # Simulate a long computation return np.random.randn(n) st.write("Click the button to compute some data.") if st.button("Compute Data 🔄"): with st.spinner("Computing..."): data = expensive_computation(1000) st.success("Computation Complete! 🎉") st.line_chart(data) else: st.write("Awaiting your command...") # Query Parameters Page elif options == "Query Parameters 🔍": st.header("Query Parameters 🔍") st.write("You can control the app via URL query parameters!") st.write("Try adding `?name=YourName` to the URL and see what happens.") name = st.experimental_get_query_params().get("name", ["Stranger"])[0] st.write(f"Hello, {name}! 👋") st.write("Change the 'name' parameter in the URL to personalize this message.") # Character Gallery Page elif options == "Character Gallery 🐾": st.header("Character Gallery 🐾") st.write("Meet our delightful characters!") characters = [ {"name": "Leo", "emoji": "🦁"}, {"name": "Mia", "emoji": "🐱"}, {"name": "Max", "emoji": "🐶"}, {"name": "Zoe", "emoji": "🦊"}, {"name": "Sam", "emoji": "🐵"}, {"name": "Lily", "emoji": "🐰"}, {"name": "Oscar", "emoji": "🐼"}, {"name": "Ella", "emoji": "🐨"}, {"name": "Jack", "emoji": "🐸"}, {"name": "Nina", "emoji": "🐙"}, {"name": "Charlie", "emoji": "🐵"}, {"name": "Daisy", "emoji": "🐷"}, {"name": "Felix", "emoji": "🐧"}, {"name": "Grace", "emoji": "🐮"}, {"name": "Henry", "emoji": "🐴"}, ] random.shuffle(characters) cols = st.columns(5) for idx, character in enumerate(characters): with cols[idx % 5]: st.write(f"{character['emoji']} **{character['name']}**") # CoTracker3 Demo Page elif options == "CoTracker3 Demo 🕵️‍♂️": st.header("CoTracker3 Demo 🕵️‍♂️") st.write("This demo showcases point tracking using [CoTracker3](https://cotracker3.github.io/).") st.write("Upload a video or select one of the example videos, then click **Track Points** to see CoTracker3 in action!") # Example videos example_videos = { "Apple": "https://github.com/facebookresearch/co-tracker/raw/refs/heads/main/assets/apple.mp4", "Bear": "https://github.com/facebookresearch/co-tracker/raw/refs/heads/main/assets/bear.mp4", "Paragliding Launch": "https://github.com/facebookresearch/co-tracker/raw/refs/heads/main/assets/paragliding-launch.mp4", "Paragliding": "https://github.com/facebookresearch/co-tracker/raw/refs/heads/main/assets/paragliding.mp4", "Cat": "https://github.com/facebookresearch/co-tracker/raw/refs/heads/main/assets/cat.mp4", "Pillow": "https://github.com/facebookresearch/co-tracker/raw/refs/heads/main/assets/pillow.mp4", "Teddy": "https://github.com/facebookresearch/co-tracker/raw/refs/heads/main/assets/teddy.mp4", "Backpack": "https://github.com/facebookresearch/co-tracker/raw/refs/heads/main/assets/backpack.mp4", } # Video uploader uploaded_video = st.file_uploader("Upload a video (mp4 format)", type=["mp4"]) # Option to select example videos selected_example = st.selectbox("Or select an example video", ["None"] + list(example_videos.keys())) # Tracking button if st.button("Track Points"): with st.spinner("Processing..."): # Load the video if uploaded_video is not None: # Process the uploaded video video_bytes = uploaded_video.read() with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file: tmp_file.write(video_bytes) tmp_video_path = tmp_file.name frames = iio.imread(tmp_video_path, plugin="pyav") elif selected_example != "None": # Download and read the example video video_url = example_videos[selected_example] frames = iio.imread(video_url, plugin="pyav") else: st.warning("Please upload a video or select an example video.") st.stop() # Check if video is too long FRAME_LIMIT = 300 if frames.shape[0] > FRAME_LIMIT: frames = frames[:FRAME_LIMIT] st.warning(f"Video is too long. Only the first {FRAME_LIMIT} frames will be processed.") # Process with CoTracker3 device = 'cuda' if torch.cuda.is_available() else 'cpu' grid_size = 10 video = torch.tensor(frames).permute(0, 3, 1, 2)[None].float().to(device) # B T C H W # Run Offline CoTracker cotracker = torch.hub.load("facebookresearch/co-tracker", "cotracker3_offline").to(device) pred_tracks, pred_visibility = cotracker(video, grid_size=grid_size) # B T N 2, B T N 1 # Visualize the results def get_colors(num_colors): colors = [] for i in np.arange(0.0, 360.0, 360.0 / num_colors): hue = i / 360.0 lightness = (50 + np.random.rand() * 10) / 100.0 saturation = (90 + np.random.rand() * 10) / 100.0 color = colorsys.hls_to_rgb(hue, lightness, saturation) colors.append( (int(color[0] * 255), int(color[1] * 255), int(color[2] * 255)) ) random.shuffle(colors) return colors def paint_point_track(frames, point_tracks, visibles, colormap=None): num_points, num_frames = point_tracks.shape[0:2] if colormap is None: colormap = get_colors(num_colors=num_points) height, width = frames.shape[1:3] radius = int(round(min(height, width) * 0.015)) video = frames.copy() for t in range(num_frames): image = video[t] for i in range(num_points): x, y = point_tracks[i, t, :] x = int(np.clip(x, 0, width - 1)) y = int(np.clip(y, 0, height - 1)) if visibles[i, t]: cv2.circle(image, (x, y), radius, colormap[i], -1) video[t] = image return video # Prepare data for visualization pred_tracks = pred_tracks[0].cpu().numpy().transpose(1, 0, 2) # N x T x 2 pred_visibility = pred_visibility[0].cpu().numpy().transpose(1, 0) # N x T output_frames = paint_point_track(frames, pred_tracks, pred_visibility) # Save the output video output_video_path = os.path.join(tempfile.gettempdir(), "output_video.mp4") writer = imageio.get_writer(output_video_path, fps=25) for frame in output_frames: writer.append_data(frame) writer.close() # Display the output video st.video(output_video_path) st.success("Tracking Complete! 🎉") # Footer with self-deprecating humor st.write("If you find any bugs, remember they're just features in disguise! 🐞")