import streamlit as st import pandas as pd import numpy as np from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import torch import json import os import glob import random from pathlib import Path from datetime import datetime, timedelta import edge_tts import asyncio import requests from collections import defaultdict import streamlit.components.v1 as components from urllib.parse import quote from xml.etree import ElementTree as ET from datasets import load_dataset import base64 import re # -------------------- Configuration & Constants -------------------- USER_NAMES = [ "Alex", "Jordan", "Taylor", "Morgan", "Rowan", "Avery", "Riley", "Quinn", "Casey", "Jesse", "Reese", "Skyler", "Ellis", "Devon", "Aubrey", "Kendall", "Parker", "Dakota", "Sage", "Finley" ] ENGLISH_VOICES = [ "en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural", "en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural", "en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural" ] ROWS_PER_PAGE = 100 MIN_SEARCH_SCORE = 0.3 EXACT_MATCH_BOOST = 2.0 SAVED_INPUTS_DIR = "saved_inputs" os.makedirs(SAVED_INPUTS_DIR, exist_ok=True) SESSION_VARS = { 'search_history': [], 'last_voice_input': "", 'transcript_history': [], 'should_rerun': False, 'search_columns': [], 'initial_search_done': False, 'tts_voice': "en-US-AriaNeural", 'arxiv_last_query': "", 'dataset_loaded': False, 'current_page': 0, 'data_cache': None, 'dataset_info': None, 'nps_submitted': False, 'nps_last_shown': None, 'old_val': None, 'voice_text': None, 'user_name': random.choice(USER_NAMES), 'max_items': 100, 'global_voice': "en-US-AriaNeural" # Default global voice } for var, default in SESSION_VARS.items(): if var not in st.session_state: st.session_state[var] = default @st.cache_resource def get_model(): return SentenceTransformer('all-MiniLM-L6-v2') def create_voice_component(): mycomponent = components.declare_component( "mycomponent", path="mycomponent" ) return mycomponent def clean_for_speech(text: str) -> str: text = text.replace("\n", " ") text = text.replace("", " ") text = text.replace("#", "") text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) text = re.sub(r"\s+", " ", text).strip() return text async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): text = clean_for_speech(text) if not text.strip(): return None rate_str = f"{rate:+d}%" pitch_str = f"{pitch:+d}Hz" communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3" await communicate.save(out_fn) return out_fn def speak_with_edge_tts(text, voice="en-US-AriaNeural"): return asyncio.run(edge_tts_generate_audio(text, voice, 0, 0)) def play_and_download_audio(file_path): if file_path and os.path.exists(file_path): st.audio(file_path) dl_link = f'Download {os.path.basename(file_path)}' st.markdown(dl_link, unsafe_allow_html=True) def generate_filename(prefix, text): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower() safe_text = re.sub(r'[-\s]+', '-', safe_text) return f"{prefix}_{timestamp}_{safe_text}.md" def save_input_as_md(user_name, text, prefix="input"): if not text.strip(): return fn = generate_filename(prefix, text) full_path = os.path.join(SAVED_INPUTS_DIR, fn) with open(full_path, 'w', encoding='utf-8') as f: f.write(f"# User: {user_name}\n") f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n") f.write(text) return full_path def save_response_as_md(user_name, text, prefix="response"): if not text.strip(): return fn = generate_filename(prefix, text) full_path = os.path.join(SAVED_INPUTS_DIR, fn) with open(full_path, 'w', encoding='utf-8') as f: f.write(f"# User: {user_name}\n") f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n") f.write(text) return full_path def list_saved_inputs(): files = sorted(glob.glob(os.path.join(SAVED_INPUTS_DIR, "*.md"))) return files def parse_md_file(fpath): # Extract user and text from md user_line = "" ts_line = "" content_lines = [] with open(fpath, 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: if line.startswith("# User:"): user_line = line.replace("# User:", "").strip() elif line.startswith("**Timestamp:**"): ts_line = line.replace("**Timestamp:**", "").strip() else: content_lines.append(line.strip()) content = "\n".join(content_lines).strip() return user_line, ts_line, content def fetch_dataset_info(dataset_id, token): info_url = f"https://huggingface.co/api/datasets/{dataset_id}" try: response = requests.get(info_url, timeout=30) if response.status_code == 200: return response.json() except Exception: pass return None @st.cache_data def get_dataset_info(dataset_id, token): try: dataset = load_dataset(dataset_id, token=token, streaming=True) return dataset['train'].info except: return None @st.cache_data def load_dataset_page(dataset_id, token, page, rows_per_page): try: start_idx = page * rows_per_page end_idx = start_idx + rows_per_page dataset = load_dataset( dataset_id, token=token, streaming=False, split=f'train[{start_idx}:{end_idx}]' ) return pd.DataFrame(dataset) except: return pd.DataFrame() class FastDatasetSearcher: def __init__(self, dataset_id="tomg-group-umd/cinepile"): self.dataset_id = dataset_id self.text_model = get_model() self.token = os.environ.get('DATASET_KEY') def load_page(self, page=0): return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE) def quick_search(self, query, df): if df.empty or not query.strip(): return df try: searchable_cols = [] if len(df) > 0: for col in df.columns: sample_val = df[col].iloc[0] if not isinstance(sample_val, (np.ndarray, bytes)): searchable_cols.append(col) query_lower = query.lower() query_terms = set(query_lower.split()) query_embedding = self.text_model.encode([query], show_progress_bar=False)[0] scores = [] matched_any = [] for _, row in df.iterrows(): text_parts = [] row_matched = False exact_match = False priority_fields = ['description', 'matched_text'] other_fields = [col for col in searchable_cols if col not in priority_fields] for col in priority_fields: if col in row: val = row[col] if val is not None: val_str = str(val).lower() if query_lower in val_str.split(): exact_match = True if any(term in val_str.split() for term in query_terms): row_matched = True text_parts.append(str(val)) for col in other_fields: val = row[col] if val is not None: val_str = str(val).lower() if query_lower in val_str.split(): exact_match = True if any(term in val_str.split() for term in query_terms): row_matched = True text_parts.append(str(val)) text = ' '.join(text_parts) if text.strip(): text_tokens = set(text.lower().split()) matching_terms = query_terms.intersection(text_tokens) keyword_score = len(matching_terms) / len(query_terms) if len(query_terms) > 0 else 0.0 text_embedding = self.text_model.encode([text], show_progress_bar=False)[0] semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0]) combined_score = 0.7 * keyword_score + 0.3 * semantic_score if exact_match: combined_score *= EXACT_MATCH_BOOST elif row_matched: combined_score *= 1.2 else: combined_score = 0.0 row_matched = False scores.append(combined_score) matched_any.append(row_matched) results_df = df.copy() results_df['score'] = scores results_df['matched'] = matched_any filtered_df = results_df[ (results_df['matched']) | (results_df['score'] > MIN_SEARCH_SCORE) ] return filtered_df.sort_values('score', ascending=False) except: return df def play_text(text): voice = st.session_state.get('global_voice', "en-US-AriaNeural") audio_file = speak_with_edge_tts(text, voice=voice) if audio_file: play_and_download_audio(audio_file) def arxiv_search(query, max_results=3): # Simple arXiv search using RSS (for demonstration) # In production, use official arXiv API or a library. base_url = "http://export.arxiv.org/api/query" params = { 'search_query': query.replace(' ', '+'), 'start': 0, 'max_results': max_results } response = requests.get(base_url, params=params, timeout=30) if response.status_code == 200: root = ET.fromstring(response.text) ns = {"a": "http://www.w3.org/2005/Atom"} entries = root.findall('a:entry', ns) results = [] for entry in entries: title = entry.find('a:title', ns).text.strip() summary = entry.find('a:summary', ns).text.strip() # Just truncating summary for demo summary_short = summary[:300] + "..." results.append((title, summary_short)) return results return [] def summarize_arxiv_results(results): # Just combine titles and short summaries lines = [] for i, (title, summary) in enumerate(results, 1): lines.append(f"Result {i}: {title}\n{summary}\n") return "\n\n".join(lines) def main(): st.title("🎙️ Voice Chat & Search") # Sidebar with st.sidebar: # Editable user name st.session_state['user_name'] = st.text_input("Current User:", value=st.session_state['user_name']) # Global voice selection st.session_state['global_voice'] = st.selectbox("Select Global Voice:", ENGLISH_VOICES, index=0) st.session_state['max_items'] = st.number_input("Max Items per search iteration:", min_value=1, max_value=1000, value=st.session_state['max_items']) st.subheader("📝 Saved Inputs & Responses") saved_files = list_saved_inputs() for fpath in saved_files: user, ts, content = parse_md_file(fpath) fname = os.path.basename(fpath) st.write(f"- {fname} (User: {user})") # Create voice component for input voice_component = create_voice_component() voice_val = voice_component(my_input_value="Start speaking...") # Tabs: Voice Chat History, Arxiv Search, Dataset Search, Settings tab1, tab2, tab3, tab4 = st.tabs(["🗣️ Voice Chat History", "📚 ArXiv Search", "📊 Dataset Search", "⚙️ Settings"]) # ------------------ Voice Chat History ------------------------- with tab1: st.subheader("Voice Chat History") # List saved inputs and responses and allow playing them files = list_saved_inputs() for fpath in reversed(files): user, ts, content = parse_md_file(fpath) with st.expander(f"{ts} - {user}", expanded=False): st.write(content) if st.button("🔊 Read Aloud", key=f"read_{fpath}"): play_text(content) # ------------------ ArXiv Search ------------------------- with tab2: st.subheader("ArXiv Search") # If we have a voice_val and autorun with ArXiv chosen: edited_input = st.text_area("Enter or Edit Search Query:", value=(voice_val.strip() if voice_val else ""), height=100) autorun = st.checkbox("⚡ Auto-Run", value=True) run_arxiv = st.button("🔍 ArXiv Search") input_changed = (edited_input != st.session_state.get('old_val')) if autorun and input_changed and edited_input.strip(): st.session_state['old_val'] = edited_input # Save user input save_input_as_md(st.session_state['user_name'], edited_input, prefix="input") with st.spinner("Searching ArXiv..."): results = arxiv_search(edited_input) if results: summary = summarize_arxiv_results(results) # Save response save_response_as_md(st.session_state['user_name'], summary, prefix="response") st.write(summary) # Autoplay TTS play_text(summary) else: st.warning("No results found on ArXiv.") if run_arxiv and edited_input.strip(): # Manual trigger save_input_as_md(st.session_state['user_name'], edited_input, prefix="input") with st.spinner("Searching ArXiv..."): results = arxiv_search(edited_input) if results: summary = summarize_arxiv_results(results) save_response_as_md(st.session_state['user_name'], summary, prefix="response") st.write(summary) play_text(summary) else: st.warning("No results found on ArXiv.") # ------------------ Dataset Search ------------------------- with tab3: st.subheader("Dataset Search") search = FastDatasetSearcher() query = st.text_input("Enter dataset search query:") run_ds_search = st.button("Search Dataset") num_results = st.slider("Max results:", 1, 100, 20) if run_ds_search and query.strip(): with st.spinner("Searching dataset..."): df = search.load_page() results = search.quick_search(query, df) if len(results) > 0: st.write(f"Found {len(results)} results:") shown = 0 for i, (_, result) in enumerate(results.iterrows(), 1): if shown >= num_results: break with st.expander(f"Result {i}", expanded=(i==1)): # Just print result keys/values here for k, v in result.items(): if k not in ['score', 'matched']: st.write(f"**{k}:** {v}") shown += 1 else: st.warning("No matching results found.") # ------------------ Settings Tab ------------------------- with tab4: st.subheader("Settings") st.write("Adjust voice and search parameters in the sidebar.") if st.button("🗑️ Clear Search History"): st.session_state['search_history'] = [] # Optionally delete files: # for fpath in list_saved_inputs(): # os.remove(fpath) st.success("Search history cleared!") if __name__ == "__main__": main()