Spaces:
Sleeping
Sleeping
Create backup9.app.py
Browse files- backup9.app.py +471 -0
backup9.app.py
ADDED
|
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
+
import torch
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
import glob
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from datetime import datetime, timedelta
|
| 12 |
+
import edge_tts
|
| 13 |
+
import asyncio
|
| 14 |
+
import requests
|
| 15 |
+
from collections import defaultdict
|
| 16 |
+
import streamlit.components.v1 as components
|
| 17 |
+
from urllib.parse import quote
|
| 18 |
+
from xml.etree import ElementTree as ET
|
| 19 |
+
from datasets import load_dataset
|
| 20 |
+
import base64
|
| 21 |
+
import re
|
| 22 |
+
|
| 23 |
+
# π§ Initialize session state variables
|
| 24 |
+
SESSION_VARS = {
|
| 25 |
+
'search_history': [], # Track search history
|
| 26 |
+
'last_voice_input': "", # Last voice input
|
| 27 |
+
'transcript_history': [], # Conversation history
|
| 28 |
+
'should_rerun': False, # Trigger for UI updates
|
| 29 |
+
'search_columns': [], # Available search columns
|
| 30 |
+
'initial_search_done': False, # First search flag
|
| 31 |
+
'tts_voice': "en-US-AriaNeural", # Default voice
|
| 32 |
+
'arxiv_last_query': "", # Last ArXiv search
|
| 33 |
+
'dataset_loaded': False, # Dataset load status
|
| 34 |
+
'current_page': 0, # Current data page
|
| 35 |
+
'data_cache': None, # Data cache
|
| 36 |
+
'dataset_info': None, # Dataset metadata
|
| 37 |
+
'nps_submitted': False, # Track if user submitted NPS
|
| 38 |
+
'nps_last_shown': None, # When NPS was last shown
|
| 39 |
+
'old_val': None, # Previous voice input value
|
| 40 |
+
'voice_text': None # Processed voice text
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
# Constants
|
| 44 |
+
ROWS_PER_PAGE = 100
|
| 45 |
+
MIN_SEARCH_SCORE = 0.3
|
| 46 |
+
EXACT_MATCH_BOOST = 2.0
|
| 47 |
+
|
| 48 |
+
# Initialize session state
|
| 49 |
+
for var, default in SESSION_VARS.items():
|
| 50 |
+
if var not in st.session_state:
|
| 51 |
+
st.session_state[var] = default
|
| 52 |
+
|
| 53 |
+
# Voice Component Setup
|
| 54 |
+
def create_voice_component():
|
| 55 |
+
"""Create the voice input component"""
|
| 56 |
+
mycomponent = components.declare_component(
|
| 57 |
+
"mycomponent",
|
| 58 |
+
path="mycomponent"
|
| 59 |
+
)
|
| 60 |
+
return mycomponent
|
| 61 |
+
|
| 62 |
+
# Utility Functions
|
| 63 |
+
def clean_for_speech(text: str) -> str:
|
| 64 |
+
"""Clean text for speech synthesis"""
|
| 65 |
+
text = text.replace("\n", " ")
|
| 66 |
+
text = text.replace("</s>", " ")
|
| 67 |
+
text = text.replace("#", "")
|
| 68 |
+
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
|
| 69 |
+
text = re.sub(r"\s+", " ", text).strip()
|
| 70 |
+
return text
|
| 71 |
+
|
| 72 |
+
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
|
| 73 |
+
"""Generate audio using Edge TTS"""
|
| 74 |
+
text = clean_for_speech(text)
|
| 75 |
+
if not text.strip():
|
| 76 |
+
return None
|
| 77 |
+
rate_str = f"{rate:+d}%"
|
| 78 |
+
pitch_str = f"{pitch:+d}Hz"
|
| 79 |
+
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
|
| 80 |
+
out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
| 81 |
+
await communicate.save(out_fn)
|
| 82 |
+
return out_fn
|
| 83 |
+
|
| 84 |
+
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
|
| 85 |
+
"""Wrapper for edge TTS generation"""
|
| 86 |
+
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
|
| 87 |
+
|
| 88 |
+
def play_and_download_audio(file_path):
|
| 89 |
+
"""Play and provide download link for audio"""
|
| 90 |
+
if file_path and os.path.exists(file_path):
|
| 91 |
+
st.audio(file_path)
|
| 92 |
+
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
|
| 93 |
+
st.markdown(dl_link, unsafe_allow_html=True)
|
| 94 |
+
|
| 95 |
+
@st.cache_resource
|
| 96 |
+
def get_model():
|
| 97 |
+
"""Get sentence transformer model"""
|
| 98 |
+
return SentenceTransformer('all-MiniLM-L6-v2')
|
| 99 |
+
|
| 100 |
+
@st.cache_data
|
| 101 |
+
def load_dataset_page(dataset_id, token, page, rows_per_page):
|
| 102 |
+
"""Load dataset page with caching"""
|
| 103 |
+
try:
|
| 104 |
+
start_idx = page * rows_per_page
|
| 105 |
+
end_idx = start_idx + rows_per_page
|
| 106 |
+
dataset = load_dataset(
|
| 107 |
+
dataset_id,
|
| 108 |
+
token=token,
|
| 109 |
+
streaming=False,
|
| 110 |
+
split=f'train[{start_idx}:{end_idx}]'
|
| 111 |
+
)
|
| 112 |
+
return pd.DataFrame(dataset)
|
| 113 |
+
except Exception as e:
|
| 114 |
+
st.error(f"Error loading page {page}: {str(e)}")
|
| 115 |
+
return pd.DataFrame()
|
| 116 |
+
|
| 117 |
+
@st.cache_data
|
| 118 |
+
def get_dataset_info(dataset_id, token):
|
| 119 |
+
"""Get dataset info with caching"""
|
| 120 |
+
try:
|
| 121 |
+
dataset = load_dataset(dataset_id, token=token, streaming=True)
|
| 122 |
+
return dataset['train'].info
|
| 123 |
+
except Exception as e:
|
| 124 |
+
st.error(f"Error loading dataset info: {str(e)}")
|
| 125 |
+
return None
|
| 126 |
+
|
| 127 |
+
def fetch_dataset_info(dataset_id):
|
| 128 |
+
"""Fetch dataset information"""
|
| 129 |
+
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
|
| 130 |
+
try:
|
| 131 |
+
response = requests.get(info_url, timeout=30)
|
| 132 |
+
if response.status_code == 200:
|
| 133 |
+
return response.json()
|
| 134 |
+
except Exception as e:
|
| 135 |
+
st.warning(f"Error fetching dataset info: {e}")
|
| 136 |
+
return None
|
| 137 |
+
|
| 138 |
+
def generate_filename(text):
|
| 139 |
+
"""Generate unique filename from text"""
|
| 140 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 141 |
+
safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower()
|
| 142 |
+
safe_text = re.sub(r'[-\s]+', '-', safe_text)
|
| 143 |
+
return f"{timestamp}_{safe_text}"
|
| 144 |
+
|
| 145 |
+
def render_result(result):
|
| 146 |
+
"""Render a single search result"""
|
| 147 |
+
score = result.get('relevance_score', 0)
|
| 148 |
+
result_filtered = {k: v for k, v in result.items()
|
| 149 |
+
if k not in ['relevance_score', 'video_embed', 'description_embed', 'audio_embed']}
|
| 150 |
+
|
| 151 |
+
if 'youtube_id' in result:
|
| 152 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
|
| 153 |
+
|
| 154 |
+
cols = st.columns([2, 1])
|
| 155 |
+
with cols[0]:
|
| 156 |
+
text_content = []
|
| 157 |
+
for key, value in result_filtered.items():
|
| 158 |
+
if isinstance(value, (str, int, float)):
|
| 159 |
+
st.write(f"**{key}:** {value}")
|
| 160 |
+
if isinstance(value, str) and len(value.strip()) > 0:
|
| 161 |
+
text_content.append(f"{key}: {value}")
|
| 162 |
+
|
| 163 |
+
with cols[1]:
|
| 164 |
+
st.metric("Relevance", f"{score:.2%}")
|
| 165 |
+
|
| 166 |
+
voices = {
|
| 167 |
+
"Aria (US Female)": "en-US-AriaNeural",
|
| 168 |
+
"Guy (US Male)": "en-US-GuyNeural",
|
| 169 |
+
"Sonia (UK Female)": "en-GB-SoniaNeural",
|
| 170 |
+
"Tony (UK Male)": "en-GB-TonyNeural"
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
selected_voice = st.selectbox(
|
| 174 |
+
"Voice:",
|
| 175 |
+
list(voices.keys()),
|
| 176 |
+
key=f"voice_{result.get('video_id', '')}"
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
if st.button("π Read", key=f"read_{result.get('video_id', '')}"):
|
| 180 |
+
text_to_read = ". ".join(text_content)
|
| 181 |
+
audio_file = speak_with_edge_tts(text_to_read, voices[selected_voice])
|
| 182 |
+
if audio_file:
|
| 183 |
+
play_and_download_audio(audio_file)
|
| 184 |
+
|
| 185 |
+
class FastDatasetSearcher:
|
| 186 |
+
"""Fast dataset search with semantic and token matching"""
|
| 187 |
+
|
| 188 |
+
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
|
| 189 |
+
self.dataset_id = dataset_id
|
| 190 |
+
self.text_model = get_model()
|
| 191 |
+
self.token = os.environ.get('DATASET_KEY')
|
| 192 |
+
if not self.token:
|
| 193 |
+
st.error("Please set the DATASET_KEY environment variable")
|
| 194 |
+
st.stop()
|
| 195 |
+
|
| 196 |
+
if st.session_state['dataset_info'] is None:
|
| 197 |
+
st.session_state['dataset_info'] = get_dataset_info(self.dataset_id, self.token)
|
| 198 |
+
|
| 199 |
+
def load_page(self, page=0):
|
| 200 |
+
"""Load a specific page of data"""
|
| 201 |
+
return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)
|
| 202 |
+
|
| 203 |
+
def quick_search(self, query, df):
|
| 204 |
+
"""Perform quick search with semantic similarity"""
|
| 205 |
+
if df.empty or not query.strip():
|
| 206 |
+
return df
|
| 207 |
+
|
| 208 |
+
try:
|
| 209 |
+
searchable_cols = []
|
| 210 |
+
for col in df.columns:
|
| 211 |
+
sample_val = df[col].iloc[0]
|
| 212 |
+
if not isinstance(sample_val, (np.ndarray, bytes)):
|
| 213 |
+
searchable_cols.append(col)
|
| 214 |
+
|
| 215 |
+
query_lower = query.lower()
|
| 216 |
+
query_terms = set(query_lower.split())
|
| 217 |
+
query_embedding = self.text_model.encode([query], show_progress_bar=False)[0]
|
| 218 |
+
|
| 219 |
+
scores = []
|
| 220 |
+
matched_any = []
|
| 221 |
+
|
| 222 |
+
for _, row in df.iterrows():
|
| 223 |
+
text_parts = []
|
| 224 |
+
row_matched = False
|
| 225 |
+
exact_match = False
|
| 226 |
+
|
| 227 |
+
priority_fields = ['description', 'matched_text']
|
| 228 |
+
other_fields = [col for col in searchable_cols if col not in priority_fields]
|
| 229 |
+
|
| 230 |
+
for col in priority_fields:
|
| 231 |
+
if col in row:
|
| 232 |
+
val = row[col]
|
| 233 |
+
if val is not None:
|
| 234 |
+
val_str = str(val).lower()
|
| 235 |
+
if query_lower in val_str.split():
|
| 236 |
+
exact_match = True
|
| 237 |
+
if any(term in val_str.split() for term in query_terms):
|
| 238 |
+
row_matched = True
|
| 239 |
+
text_parts.append(str(val))
|
| 240 |
+
|
| 241 |
+
for col in other_fields:
|
| 242 |
+
val = row[col]
|
| 243 |
+
if val is not None:
|
| 244 |
+
val_str = str(val).lower()
|
| 245 |
+
if query_lower in val_str.split():
|
| 246 |
+
exact_match = True
|
| 247 |
+
if any(term in val_str.split() for term in query_terms):
|
| 248 |
+
row_matched = True
|
| 249 |
+
text_parts.append(str(val))
|
| 250 |
+
|
| 251 |
+
text = ' '.join(text_parts)
|
| 252 |
+
|
| 253 |
+
if text.strip():
|
| 254 |
+
text_tokens = set(text.lower().split())
|
| 255 |
+
matching_terms = query_terms.intersection(text_tokens)
|
| 256 |
+
keyword_score = len(matching_terms) / len(query_terms)
|
| 257 |
+
|
| 258 |
+
text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
|
| 259 |
+
semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0])
|
| 260 |
+
|
| 261 |
+
combined_score = 0.7 * keyword_score + 0.3 * semantic_score
|
| 262 |
+
|
| 263 |
+
if exact_match:
|
| 264 |
+
combined_score *= EXACT_MATCH_BOOST
|
| 265 |
+
elif row_matched:
|
| 266 |
+
combined_score *= 1.2
|
| 267 |
+
else:
|
| 268 |
+
combined_score = 0.0
|
| 269 |
+
row_matched = False
|
| 270 |
+
|
| 271 |
+
scores.append(combined_score)
|
| 272 |
+
matched_any.append(row_matched)
|
| 273 |
+
|
| 274 |
+
results_df = df.copy()
|
| 275 |
+
results_df['score'] = scores
|
| 276 |
+
results_df['matched'] = matched_any
|
| 277 |
+
|
| 278 |
+
filtered_df = results_df[
|
| 279 |
+
(results_df['matched']) |
|
| 280 |
+
(results_df['score'] > MIN_SEARCH_SCORE)
|
| 281 |
+
]
|
| 282 |
+
|
| 283 |
+
return filtered_df.sort_values('score', ascending=False)
|
| 284 |
+
|
| 285 |
+
except Exception as e:
|
| 286 |
+
st.error(f"Search error: {str(e)}")
|
| 287 |
+
return df
|
| 288 |
+
|
| 289 |
+
def main():
|
| 290 |
+
st.title("π₯ Smart Video & Voice Search")
|
| 291 |
+
|
| 292 |
+
# Initialize components
|
| 293 |
+
voice_component = create_voice_component()
|
| 294 |
+
search = FastDatasetSearcher()
|
| 295 |
+
|
| 296 |
+
# Voice input at top level
|
| 297 |
+
voice_val = voice_component(my_input_value="Start speaking...")
|
| 298 |
+
|
| 299 |
+
# Show voice input if detected
|
| 300 |
+
if voice_val:
|
| 301 |
+
voice_text = str(voice_val).strip()
|
| 302 |
+
edited_input = st.text_area("βοΈ Edit Voice Input:", value=voice_text, height=100)
|
| 303 |
+
|
| 304 |
+
run_option = st.selectbox("Select Search Type:",
|
| 305 |
+
["Quick Search", "Deep Search", "Voice Summary"])
|
| 306 |
+
|
| 307 |
+
col1, col2 = st.columns(2)
|
| 308 |
+
with col1:
|
| 309 |
+
autorun = st.checkbox("β‘ Auto-Run", value=False)
|
| 310 |
+
with col2:
|
| 311 |
+
full_audio = st.checkbox("π Full Audio", value=False)
|
| 312 |
+
|
| 313 |
+
input_changed = (voice_text != st.session_state.get('old_val'))
|
| 314 |
+
|
| 315 |
+
if autorun and input_changed:
|
| 316 |
+
st.session_state['old_val'] = voice_text
|
| 317 |
+
with st.spinner("Processing voice input..."):
|
| 318 |
+
if run_option == "Quick Search":
|
| 319 |
+
results = search.quick_search(edited_input, search.load_page())
|
| 320 |
+
for i, result in enumerate(results.iterrows(), 1):
|
| 321 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 322 |
+
render_result(result[1])
|
| 323 |
+
|
| 324 |
+
elif run_option == "Deep Search":
|
| 325 |
+
with st.spinner("Performing deep search..."):
|
| 326 |
+
results = []
|
| 327 |
+
for page in range(3): # Search first 3 pages
|
| 328 |
+
df = search.load_page(page)
|
| 329 |
+
results.extend(search.quick_search(edited_input, df).iterrows())
|
| 330 |
+
|
| 331 |
+
for i, result in enumerate(results, 1):
|
| 332 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 333 |
+
render_result(result[1])
|
| 334 |
+
|
| 335 |
+
elif run_option == "Voice Summary":
|
| 336 |
+
audio_file = speak_with_edge_tts(edited_input)
|
| 337 |
+
if audio_file:
|
| 338 |
+
play_and_download_audio(audio_file)
|
| 339 |
+
|
| 340 |
+
elif st.button("π Search", key="voice_input_search"):
|
| 341 |
+
st.session_state['old_val'] = voice_text
|
| 342 |
+
with st.spinner("Processing..."):
|
| 343 |
+
results = search.quick_search(edited_input, search.load_page())
|
| 344 |
+
for i, result in enumerate(results.iterrows(), 1):
|
| 345 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 346 |
+
render_result(result[1])
|
| 347 |
+
|
| 348 |
+
# Create main tabs
|
| 349 |
+
tab1, tab2, tab3, tab4 = st.tabs([
|
| 350 |
+
"π Search", "ποΈ Voice", "πΎ History", "βοΈ Settings"
|
| 351 |
+
])
|
| 352 |
+
|
| 353 |
+
with tab1:
|
| 354 |
+
st.subheader("π Search")
|
| 355 |
+
col1, col2 = st.columns([3, 1])
|
| 356 |
+
with col1:
|
| 357 |
+
query = st.text_input("Enter search query:",
|
| 358 |
+
value="" if st.session_state['initial_search_done'] else "")
|
| 359 |
+
with col2:
|
| 360 |
+
search_column = st.selectbox("Search in:",
|
| 361 |
+
["All Fields"] + st.session_state['search_columns'])
|
| 362 |
+
|
| 363 |
+
col3, col4 = st.columns(2)
|
| 364 |
+
with col3:
|
| 365 |
+
num_results = st.slider("Max results:", 1, 100, 20)
|
| 366 |
+
with col4:
|
| 367 |
+
search_button = st.button("π Search", key="main_search_button")
|
| 368 |
+
|
| 369 |
+
if (search_button or not st.session_state['initial_search_done']) and query:
|
| 370 |
+
st.session_state['initial_search_done'] = True
|
| 371 |
+
selected_column = None if search_column == "All Fields" else search_column
|
| 372 |
+
|
| 373 |
+
with st.spinner("Searching..."):
|
| 374 |
+
df = search.load_page()
|
| 375 |
+
results = search.quick_search(query, df)
|
| 376 |
+
|
| 377 |
+
if len(results) > 0:
|
| 378 |
+
st.session_state['search_history'].append({
|
| 379 |
+
'query': query,
|
| 380 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 381 |
+
'results': results[:5]
|
| 382 |
+
})
|
| 383 |
+
|
| 384 |
+
st.write(f"Found {len(results)} results:")
|
| 385 |
+
for i, (_, result) in enumerate(results.iterrows(), 1):
|
| 386 |
+
if i > num_results:
|
| 387 |
+
break
|
| 388 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 389 |
+
render_result(result)
|
| 390 |
+
else:
|
| 391 |
+
st.warning("No matching results found.")
|
| 392 |
+
|
| 393 |
+
with tab2:
|
| 394 |
+
st.subheader("ποΈ Voice Input")
|
| 395 |
+
st.write("Use the voice input above to start speaking, or record a new message:")
|
| 396 |
+
|
| 397 |
+
col1, col2 = st.columns(2)
|
| 398 |
+
with col1:
|
| 399 |
+
if st.button("ποΈ Start New Recording", key="start_recording_button"):
|
| 400 |
+
st.session_state['recording'] = True
|
| 401 |
+
st.experimental_rerun()
|
| 402 |
+
with col2:
|
| 403 |
+
if st.button("π Stop Recording", key="stop_recording_button"):
|
| 404 |
+
st.session_state['recording'] = False
|
| 405 |
+
st.experimental_rerun()
|
| 406 |
+
|
| 407 |
+
if st.session_state.get('recording', False):
|
| 408 |
+
voice_component = create_voice_component()
|
| 409 |
+
new_val = voice_component(my_input_value="Recording...")
|
| 410 |
+
if new_val:
|
| 411 |
+
st.text_area("Recorded Text:", value=new_val, height=100)
|
| 412 |
+
if st.button("π Search with Recording", key="recording_search_button"):
|
| 413 |
+
with st.spinner("Processing recording..."):
|
| 414 |
+
df = search.load_page()
|
| 415 |
+
results = search.quick_search(new_val, df)
|
| 416 |
+
for i, (_, result) in enumerate(results.iterrows(), 1):
|
| 417 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 418 |
+
render_result(result)
|
| 419 |
+
|
| 420 |
+
with tab3:
|
| 421 |
+
st.subheader("πΎ Search History")
|
| 422 |
+
if not st.session_state['search_history']:
|
| 423 |
+
st.info("No search history yet. Try searching for something!")
|
| 424 |
+
else:
|
| 425 |
+
for entry in reversed(st.session_state['search_history']):
|
| 426 |
+
with st.expander(f"π {entry['timestamp']} - {entry['query']}", expanded=False):
|
| 427 |
+
for i, result in enumerate(entry['results'], 1):
|
| 428 |
+
st.write(f"**Result {i}:**")
|
| 429 |
+
if isinstance(result, pd.Series):
|
| 430 |
+
render_result(result)
|
| 431 |
+
else:
|
| 432 |
+
st.write(result)
|
| 433 |
+
|
| 434 |
+
with tab4:
|
| 435 |
+
st.subheader("βοΈ Settings")
|
| 436 |
+
st.write("Voice Settings:")
|
| 437 |
+
default_voice = st.selectbox(
|
| 438 |
+
"Default Voice:",
|
| 439 |
+
[
|
| 440 |
+
"en-US-AriaNeural",
|
| 441 |
+
"en-US-GuyNeural",
|
| 442 |
+
"en-GB-SoniaNeural",
|
| 443 |
+
"en-GB-TonyNeural"
|
| 444 |
+
],
|
| 445 |
+
index=0,
|
| 446 |
+
key="default_voice_setting"
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
st.write("Search Settings:")
|
| 450 |
+
st.slider("Minimum Search Score:", 0.0, 1.0, MIN_SEARCH_SCORE, 0.1, key="min_search_score")
|
| 451 |
+
st.slider("Exact Match Boost:", 1.0, 3.0, EXACT_MATCH_BOOST, 0.1, key="exact_match_boost")
|
| 452 |
+
|
| 453 |
+
if st.button("ποΈ Clear Search History", key="clear_history_button"):
|
| 454 |
+
st.session_state['search_history'] = []
|
| 455 |
+
st.success("Search history cleared!")
|
| 456 |
+
st.experimental_rerun()
|
| 457 |
+
|
| 458 |
+
# Sidebar with metrics
|
| 459 |
+
with st.sidebar:
|
| 460 |
+
st.subheader("π Search Metrics")
|
| 461 |
+
total_searches = len(st.session_state['search_history'])
|
| 462 |
+
st.metric("Total Searches", total_searches)
|
| 463 |
+
|
| 464 |
+
if total_searches > 0:
|
| 465 |
+
recent_searches = st.session_state['search_history'][-5:]
|
| 466 |
+
st.write("Recent Searches:")
|
| 467 |
+
for entry in reversed(recent_searches):
|
| 468 |
+
st.write(f"π {entry['query']}")
|
| 469 |
+
|
| 470 |
+
if __name__ == "__main__":
|
| 471 |
+
main()
|