Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import torch
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
class VideoRetrieval:
|
12 |
+
def __init__(self):
|
13 |
+
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
14 |
+
self.load_data()
|
15 |
+
|
16 |
+
def load_data(self):
|
17 |
+
# Load pre-computed features
|
18 |
+
# In practice, these would be loaded from your actual feature files
|
19 |
+
self.features = {
|
20 |
+
'visual_features': np.load('path_to_visual_features.npy'),
|
21 |
+
'scene_features': np.load('path_to_scene_features.npy'),
|
22 |
+
'object_features': np.load('path_to_object_features.npy')
|
23 |
+
}
|
24 |
+
|
25 |
+
# Load clip metadata
|
26 |
+
self.clips_df = pd.read_csv('clips_metadata.csv')
|
27 |
+
|
28 |
+
def encode_query(self, query_text):
|
29 |
+
"""Encode the text query into embeddings"""
|
30 |
+
return self.text_model.encode(query_text)
|
31 |
+
|
32 |
+
def compute_similarity(self, query_embedding, feature_type='visual_features'):
|
33 |
+
"""Compute similarity between query and video features"""
|
34 |
+
similarities = cosine_similarity(
|
35 |
+
query_embedding.reshape(1, -1),
|
36 |
+
self.features[feature_type]
|
37 |
+
)
|
38 |
+
return similarities[0]
|
39 |
+
|
40 |
+
def retrieve_clips(self, query_text, top_k=3):
|
41 |
+
"""Retrieve top-k most relevant clips based on query"""
|
42 |
+
# Encode query
|
43 |
+
query_embedding = self.encode_query(query_text)
|
44 |
+
|
45 |
+
# Compute similarities for different feature types
|
46 |
+
similarities = {}
|
47 |
+
weights = {
|
48 |
+
'visual_features': 0.4,
|
49 |
+
'scene_features': 0.3,
|
50 |
+
'object_features': 0.3
|
51 |
+
}
|
52 |
+
|
53 |
+
for feat_type, weight in weights.items():
|
54 |
+
similarities[feat_type] = self.compute_similarity(query_embedding, feat_type) * weight
|
55 |
+
|
56 |
+
# Combine similarities
|
57 |
+
combined_similarities = sum(similarities.values())
|
58 |
+
|
59 |
+
# Get top-k indices
|
60 |
+
top_indices = np.argsort(combined_similarities)[-top_k:][::-1]
|
61 |
+
|
62 |
+
# Return clip information
|
63 |
+
results = []
|
64 |
+
for idx in top_indices:
|
65 |
+
results.append({
|
66 |
+
'clip_id': self.clips_df.iloc[idx]['clip_id'],
|
67 |
+
'movie_title': self.clips_df.iloc[idx]['movie_title'],
|
68 |
+
'description': self.clips_df.iloc[idx]['description'],
|
69 |
+
'timestamp': self.clips_df.iloc[idx]['timestamp'],
|
70 |
+
'similarity_score': combined_similarities[idx]
|
71 |
+
})
|
72 |
+
|
73 |
+
return results
|
74 |
+
|
75 |
+
# Streamlit UI
|
76 |
+
def main():
|
77 |
+
st.title("Movie Scene Retrieval System")
|
78 |
+
st.write("""
|
79 |
+
Search for movie scenes using natural language descriptions.
|
80 |
+
The system will retrieve the most relevant 2-3 minute clips based on your query.
|
81 |
+
""")
|
82 |
+
|
83 |
+
# Initialize retrieval system
|
84 |
+
try:
|
85 |
+
retrieval_system = st.session_state.retrieval_system
|
86 |
+
except AttributeError:
|
87 |
+
retrieval_system = VideoRetrieval()
|
88 |
+
st.session_state.retrieval_system = retrieval_system
|
89 |
+
|
90 |
+
# Search interface
|
91 |
+
query = st.text_input("Enter your scene description:",
|
92 |
+
"A dramatic confrontation between two characters in a dark room")
|
93 |
+
|
94 |
+
num_results = st.slider("Number of results to show:", min_value=1, max_value=5, value=3)
|
95 |
+
|
96 |
+
if st.button("Search"):
|
97 |
+
with st.spinner("Searching for relevant clips..."):
|
98 |
+
results = retrieval_system.retrieve_clips(query, top_k=num_results)
|
99 |
+
|
100 |
+
for i, result in enumerate(results, 1):
|
101 |
+
st.subheader(f"Result {i}: {result['movie_title']}")
|
102 |
+
col1, col2 = st.columns([2, 1])
|
103 |
+
|
104 |
+
with col1:
|
105 |
+
st.write("**Scene Description:**")
|
106 |
+
st.write(result['description'])
|
107 |
+
st.write(f"**Timestamp:** {result['timestamp']}")
|
108 |
+
|
109 |
+
with col2:
|
110 |
+
st.write("**Similarity Score:**")
|
111 |
+
st.progress(float(result['similarity_score']))
|
112 |
+
|
113 |
+
# In practice, you would have a way to play the video clip here
|
114 |
+
st.write("---")
|
115 |
+
|
116 |
+
# Additional features
|
117 |
+
with st.sidebar:
|
118 |
+
st.header("About")
|
119 |
+
st.write("""
|
120 |
+
This system uses pre-computed visual features from several expert models to retrieve
|
121 |
+
relevant movie clips based on natural language descriptions. Features include:
|
122 |
+
|
123 |
+
- Visual scene understanding
|
124 |
+
- Character interaction analysis
|
125 |
+
- Object detection
|
126 |
+
- Action recognition
|
127 |
+
""")
|
128 |
+
|
129 |
+
st.header("Feature Weights")
|
130 |
+
st.write("Current weights used for similarity computation:")
|
131 |
+
st.write("- Visual Features: 40%")
|
132 |
+
st.write("- Scene Features: 30%")
|
133 |
+
st.write("- Object Features: 30%")
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
main()
|
137 |
+
|
138 |
+
# Requirements.txt
|
139 |
+
'''
|
140 |
+
streamlit==1.22.0
|
141 |
+
pandas==1.5.3
|
142 |
+
numpy==1.23.5
|
143 |
+
sentence-transformers==2.2.2
|
144 |
+
scikit-learn==1.2.2
|
145 |
+
torch==2.0.0
|
146 |
+
|
147 |
+
streamlit
|
148 |
+
pandas
|
149 |
+
numpy
|
150 |
+
sentence-transformers
|
151 |
+
scikit-learn
|
152 |
+
torch
|
153 |
+
|
154 |
+
'''
|