Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,6 +16,15 @@ import requests
|
|
16 |
from collections import defaultdict
|
17 |
from audio_recorder_streamlit import audio_recorder
|
18 |
import streamlit.components.v1 as components
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Initialize session state
|
21 |
if 'search_history' not in st.session_state:
|
@@ -30,6 +39,10 @@ if 'search_columns' not in st.session_state:
|
|
30 |
st.session_state['search_columns'] = []
|
31 |
if 'initial_search_done' not in st.session_state:
|
32 |
st.session_state['initial_search_done'] = False
|
|
|
|
|
|
|
|
|
33 |
|
34 |
class VideoSearch:
|
35 |
def __init__(self):
|
@@ -37,11 +50,10 @@ class VideoSearch:
|
|
37 |
self.load_dataset()
|
38 |
|
39 |
def fetch_dataset_rows(self):
|
40 |
-
"""Fetch dataset from
|
41 |
try:
|
42 |
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
|
43 |
response = requests.get(url, timeout=30)
|
44 |
-
|
45 |
if response.status_code == 200:
|
46 |
data = response.json()
|
47 |
if 'rows' in data:
|
@@ -63,8 +75,7 @@ class VideoSearch:
|
|
63 |
if col not in ['video_embed', 'description_embed', 'audio_embed']]
|
64 |
return df
|
65 |
return self.load_example_data()
|
66 |
-
|
67 |
-
except Exception as e:
|
68 |
return self.load_example_data()
|
69 |
|
70 |
def prepare_features(self):
|
@@ -88,7 +99,7 @@ class VideoSearch:
|
|
88 |
|
89 |
if data:
|
90 |
embeddings[col] = np.array(data)
|
91 |
-
except
|
92 |
continue
|
93 |
|
94 |
# Set main embeddings for search
|
@@ -102,14 +113,13 @@ class VideoSearch:
|
|
102 |
else:
|
103 |
self.text_embeds = self.video_embeds
|
104 |
|
105 |
-
except Exception
|
106 |
# Fallback to random embeddings
|
107 |
num_rows = len(self.dataset)
|
108 |
self.video_embeds = np.random.randn(num_rows, 384)
|
109 |
self.text_embeds = np.random.randn(num_rows, 384)
|
110 |
|
111 |
def load_example_data(self):
|
112 |
-
"""Load example data as fallback"""
|
113 |
example_data = [
|
114 |
{
|
115 |
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
|
@@ -129,27 +139,22 @@ class VideoSearch:
|
|
129 |
self.prepare_features()
|
130 |
|
131 |
def search(self, query, column=None, top_k=20):
|
132 |
-
"""Search videos using query with column filtering"""
|
133 |
-
# Semantic search
|
134 |
query_embedding = self.text_model.encode([query])[0]
|
135 |
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
|
136 |
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
|
137 |
combined_sims = 0.5 * video_sims + 0.5 * text_sims
|
138 |
|
139 |
-
# Column
|
140 |
-
if column and column in self.dataset.columns:
|
141 |
mask = self.dataset[column].astype(str).str.contains(query, case=False)
|
142 |
-
combined_sims[~mask] *= 0.5
|
143 |
|
144 |
-
# Get top results
|
145 |
top_k = min(top_k, 100)
|
146 |
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
|
147 |
|
148 |
results = []
|
149 |
for idx in top_indices:
|
150 |
-
result = {
|
151 |
-
'relevance_score': float(combined_sims[idx])
|
152 |
-
}
|
153 |
for col in self.dataset.columns:
|
154 |
if col not in ['video_embed', 'description_embed', 'audio_embed']:
|
155 |
result[col] = self.dataset.iloc[idx][col]
|
@@ -157,127 +162,19 @@ class VideoSearch:
|
|
157 |
|
158 |
return results
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
# Create tabs
|
167 |
-
tab1, tab2, tab3 = st.tabs(["π Search", "ποΈ Voice Input", "π Files"])
|
168 |
-
|
169 |
-
with tab1:
|
170 |
-
st.subheader("Search Videos")
|
171 |
-
|
172 |
-
# Search interface
|
173 |
-
col1, col2 = st.columns([3, 1])
|
174 |
-
with col1:
|
175 |
-
query = st.text_input("Enter your search query:", value="ancient" if not st.session_state['initial_search_done'] else "")
|
176 |
-
with col2:
|
177 |
-
search_column = st.selectbox("Search in field:",
|
178 |
-
["All Fields"] + st.session_state['search_columns'])
|
179 |
-
|
180 |
-
col3, col4 = st.columns(2)
|
181 |
-
with col3:
|
182 |
-
num_results = st.slider("Number of results:", 1, 100, 20)
|
183 |
-
with col4:
|
184 |
-
search_button = st.button("π Search")
|
185 |
-
|
186 |
-
# Process search
|
187 |
-
if (search_button or not st.session_state['initial_search_done']) and query:
|
188 |
-
st.session_state['initial_search_done'] = True
|
189 |
-
selected_column = None if search_column == "All Fields" else search_column
|
190 |
-
results = search.search(query, selected_column, num_results)
|
191 |
-
|
192 |
-
st.session_state['search_history'].append({
|
193 |
-
'query': query,
|
194 |
-
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
195 |
-
'results': results[:5] # Store only top 5 for history
|
196 |
-
})
|
197 |
-
|
198 |
-
for i, result in enumerate(results, 1):
|
199 |
-
with st.expander(f"Result {i}: {result['description'][:100]}...",
|
200 |
-
expanded=i==1):
|
201 |
-
cols = st.columns([2, 1])
|
202 |
-
with cols[0]:
|
203 |
-
st.markdown("**Description:**")
|
204 |
-
st.write(result['description'])
|
205 |
-
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
|
206 |
-
st.markdown(f"**Views:** {result['views']:,}")
|
207 |
-
|
208 |
-
with cols[1]:
|
209 |
-
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
|
210 |
-
if result.get('youtube_id'):
|
211 |
-
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
212 |
-
|
213 |
-
if st.button(f"π Audio Summary", key=f"audio_{i}"):
|
214 |
-
summary = f"Video summary: {result['description'][:200]}"
|
215 |
-
audio_file = asyncio.run(generate_speech(summary))
|
216 |
-
if audio_file:
|
217 |
-
st.audio(audio_file)
|
218 |
-
if os.path.exists(audio_file):
|
219 |
-
os.remove(audio_file)
|
220 |
-
|
221 |
-
with tab2:
|
222 |
-
st.subheader("Voice Input")
|
223 |
-
|
224 |
-
col1, col2 = st.columns(2)
|
225 |
-
with col1:
|
226 |
-
st.write("ποΈ Speech Recognition")
|
227 |
-
voice_input = speech_component()
|
228 |
-
|
229 |
-
if voice_input and voice_input != st.session_state['last_voice_input']:
|
230 |
-
st.session_state['last_voice_input'] = voice_input
|
231 |
-
st.markdown("**Transcribed Text:**")
|
232 |
-
st.write(voice_input)
|
233 |
-
|
234 |
-
if st.button("π Search"):
|
235 |
-
results = search.search(voice_input, None, num_results)
|
236 |
-
for i, result in enumerate(results, 1):
|
237 |
-
with st.expander(f"Result {i}", expanded=i==1):
|
238 |
-
st.write(result['description'])
|
239 |
-
if result.get('youtube_id'):
|
240 |
-
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
|
241 |
-
|
242 |
-
with col2:
|
243 |
-
st.write("π΅ Audio Recording")
|
244 |
-
audio_bytes = audio_recorder()
|
245 |
-
if audio_bytes:
|
246 |
-
audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
|
247 |
-
with open(audio_path, "wb") as f:
|
248 |
-
f.write(audio_bytes)
|
249 |
-
st.success("Audio recorded successfully!")
|
250 |
-
if os.path.exists(audio_path):
|
251 |
-
os.remove(audio_path)
|
252 |
-
|
253 |
-
with tab3:
|
254 |
-
show_file_manager()
|
255 |
-
|
256 |
-
# Sidebar
|
257 |
-
with st.sidebar:
|
258 |
-
st.subheader("βοΈ Settings & History")
|
259 |
-
|
260 |
-
if st.button("ποΈ Clear History"):
|
261 |
-
st.session_state['search_history'] = []
|
262 |
-
st.rerun()
|
263 |
-
|
264 |
-
st.markdown("### Recent Searches")
|
265 |
-
for entry in reversed(st.session_state['search_history'][-5:]):
|
266 |
-
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
|
267 |
-
for i, result in enumerate(entry['results'], 1):
|
268 |
-
st.write(f"{i}. {result['description'][:100]}...")
|
269 |
-
|
270 |
-
st.markdown("### Voice Settings")
|
271 |
-
st.selectbox("TTS Voice:",
|
272 |
-
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
|
273 |
-
key="tts_voice")
|
274 |
|
275 |
-
async def generate_speech(text, voice=
|
276 |
-
"""Generate speech using Edge TTS"""
|
277 |
if not text.strip():
|
278 |
return None
|
|
|
|
|
279 |
try:
|
280 |
-
communicate =
|
281 |
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
282 |
await communicate.save(audio_file)
|
283 |
return audio_file
|
@@ -285,11 +182,19 @@ async def generate_speech(text, voice="en-US-AriaNeural"):
|
|
285 |
st.error(f"Error generating speech: {e}")
|
286 |
return None
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
def show_file_manager():
|
289 |
"""Display file manager interface"""
|
290 |
st.subheader("π File Manager")
|
291 |
-
|
292 |
-
# File operations
|
293 |
col1, col2 = st.columns(2)
|
294 |
with col1:
|
295 |
uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3'])
|
@@ -297,16 +202,15 @@ def show_file_manager():
|
|
297 |
with open(uploaded_file.name, "wb") as f:
|
298 |
f.write(uploaded_file.getvalue())
|
299 |
st.success(f"Uploaded: {uploaded_file.name}")
|
300 |
-
st.
|
301 |
|
302 |
with col2:
|
303 |
if st.button("π Clear All Files"):
|
304 |
for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
|
305 |
os.remove(f)
|
306 |
st.success("All files cleared!")
|
307 |
-
st.
|
308 |
|
309 |
-
# Show existing files
|
310 |
files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
|
311 |
if files:
|
312 |
st.write("### Existing Files")
|
@@ -315,52 +219,54 @@ def show_file_manager():
|
|
315 |
if f.endswith('.mp3'):
|
316 |
st.audio(f)
|
317 |
else:
|
318 |
-
with open(f, 'r') as file:
|
319 |
st.text_area("Content", file.read(), height=100)
|
320 |
if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
|
321 |
os.remove(f)
|
322 |
-
st.
|
323 |
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
return glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
return edge_tts.Communicate
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
|
|
|
|
346 |
|
|
|
|
|
|
|
347 |
def main():
|
348 |
-
st.title("π₯ Video Search with
|
349 |
|
350 |
-
# Initialize search
|
351 |
search = VideoSearch()
|
352 |
|
353 |
# Create tabs
|
354 |
-
tab1, tab2, tab3 = st.tabs(["π Search", "ποΈ Voice Input", "π Files"])
|
355 |
|
|
|
356 |
with tab1:
|
357 |
st.subheader("Search Videos")
|
358 |
-
|
359 |
-
# Search interface
|
360 |
col1, col2 = st.columns([3, 1])
|
361 |
with col1:
|
362 |
query = st.text_input("Enter your search query:",
|
363 |
-
|
364 |
with col2:
|
365 |
search_column = st.selectbox("Search in field:",
|
366 |
["All Fields"] + st.session_state['search_columns'])
|
@@ -370,8 +276,7 @@ def main():
|
|
370 |
num_results = st.slider("Number of results:", 1, 100, 20)
|
371 |
with col4:
|
372 |
search_button = st.button("π Search")
|
373 |
-
|
374 |
-
# Process search
|
375 |
if (search_button or not st.session_state['initial_search_done']) and query:
|
376 |
st.session_state['initial_search_done'] = True
|
377 |
selected_column = None if search_column == "All Fields" else search_column
|
@@ -381,12 +286,11 @@ def main():
|
|
381 |
st.session_state['search_history'].append({
|
382 |
'query': query,
|
383 |
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
384 |
-
'results': results[:5]
|
385 |
})
|
386 |
|
387 |
for i, result in enumerate(results, 1):
|
388 |
-
with st.expander(f"Result {i}: {result['description'][:100]}...",
|
389 |
-
expanded=i==1):
|
390 |
cols = st.columns([2, 1])
|
391 |
with cols[0]:
|
392 |
st.markdown("**Description:**")
|
@@ -404,68 +308,77 @@ def main():
|
|
404 |
audio_file = asyncio.run(generate_speech(summary))
|
405 |
if audio_file:
|
406 |
st.audio(audio_file)
|
407 |
-
|
408 |
-
|
409 |
-
|
|
|
|
|
410 |
with tab2:
|
411 |
st.subheader("Voice Input")
|
412 |
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
|
|
|
428 |
with tab3:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
show_file_manager()
|
430 |
|
431 |
# Sidebar
|
432 |
with st.sidebar:
|
433 |
st.subheader("βοΈ Settings & History")
|
434 |
-
|
435 |
if st.button("ποΈ Clear History"):
|
436 |
st.session_state['search_history'] = []
|
437 |
-
st.
|
438 |
|
439 |
st.markdown("### Recent Searches")
|
440 |
for entry in reversed(st.session_state['search_history'][-5:]):
|
441 |
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
|
442 |
for i, result in enumerate(entry['results'], 1):
|
443 |
st.write(f"{i}. {result['description'][:100]}...")
|
444 |
-
|
445 |
st.markdown("### Voice Settings")
|
446 |
-
st.selectbox("TTS Voice:",
|
447 |
-
|
448 |
-
|
449 |
-
with col2:
|
450 |
-
if st.button("π Clear All Files"):
|
451 |
-
for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
|
452 |
-
os.remove(f)
|
453 |
-
st.success("All files cleared!")
|
454 |
-
|
455 |
-
# Show existing files
|
456 |
-
files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
|
457 |
-
if files:
|
458 |
-
st.write("### Existing Files")
|
459 |
-
for f in files:
|
460 |
-
with st.expander(f"π {os.path.basename(f)}"):
|
461 |
-
if f.endswith('.mp3'):
|
462 |
-
st.audio(f)
|
463 |
-
else:
|
464 |
-
with open(f, 'r') as file:
|
465 |
-
st.text_area("Content", file.read(), height=100)
|
466 |
-
if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
|
467 |
-
os.remove(f)
|
468 |
-
st.rerun()
|
469 |
|
470 |
if __name__ == "__main__":
|
471 |
-
main()
|
|
|
16 |
from collections import defaultdict
|
17 |
from audio_recorder_streamlit import audio_recorder
|
18 |
import streamlit.components.v1 as components
|
19 |
+
import openai
|
20 |
+
from dotenv import load_dotenv
|
21 |
+
|
22 |
+
# Load environment
|
23 |
+
load_dotenv()
|
24 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
25 |
+
|
26 |
+
# Ensure edge_tts and other dependencies are installed
|
27 |
+
# pip install edge-tts openai streamlit-audiorecorder
|
28 |
|
29 |
# Initialize session state
|
30 |
if 'search_history' not in st.session_state:
|
|
|
39 |
st.session_state['search_columns'] = []
|
40 |
if 'initial_search_done' not in st.session_state:
|
41 |
st.session_state['initial_search_done'] = False
|
42 |
+
if 'tts_voice' not in st.session_state:
|
43 |
+
st.session_state['tts_voice'] = "en-US-AriaNeural"
|
44 |
+
if 'arxiv_last_query' not in st.session_state:
|
45 |
+
st.session_state['arxiv_last_query'] = ""
|
46 |
|
47 |
class VideoSearch:
|
48 |
def __init__(self):
|
|
|
50 |
self.load_dataset()
|
51 |
|
52 |
def fetch_dataset_rows(self):
|
53 |
+
"""Fetch dataset from HF API"""
|
54 |
try:
|
55 |
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
|
56 |
response = requests.get(url, timeout=30)
|
|
|
57 |
if response.status_code == 200:
|
58 |
data = response.json()
|
59 |
if 'rows' in data:
|
|
|
75 |
if col not in ['video_embed', 'description_embed', 'audio_embed']]
|
76 |
return df
|
77 |
return self.load_example_data()
|
78 |
+
except Exception:
|
|
|
79 |
return self.load_example_data()
|
80 |
|
81 |
def prepare_features(self):
|
|
|
99 |
|
100 |
if data:
|
101 |
embeddings[col] = np.array(data)
|
102 |
+
except:
|
103 |
continue
|
104 |
|
105 |
# Set main embeddings for search
|
|
|
113 |
else:
|
114 |
self.text_embeds = self.video_embeds
|
115 |
|
116 |
+
except Exception:
|
117 |
# Fallback to random embeddings
|
118 |
num_rows = len(self.dataset)
|
119 |
self.video_embeds = np.random.randn(num_rows, 384)
|
120 |
self.text_embeds = np.random.randn(num_rows, 384)
|
121 |
|
122 |
def load_example_data(self):
|
|
|
123 |
example_data = [
|
124 |
{
|
125 |
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
|
|
|
139 |
self.prepare_features()
|
140 |
|
141 |
def search(self, query, column=None, top_k=20):
|
|
|
|
|
142 |
query_embedding = self.text_model.encode([query])[0]
|
143 |
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
|
144 |
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
|
145 |
combined_sims = 0.5 * video_sims + 0.5 * text_sims
|
146 |
|
147 |
+
# Column filtering
|
148 |
+
if column and column in self.dataset.columns and column != "All Fields":
|
149 |
mask = self.dataset[column].astype(str).str.contains(query, case=False)
|
150 |
+
combined_sims[~mask] *= 0.5
|
151 |
|
|
|
152 |
top_k = min(top_k, 100)
|
153 |
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
|
154 |
|
155 |
results = []
|
156 |
for idx in top_indices:
|
157 |
+
result = {'relevance_score': float(combined_sims[idx])}
|
|
|
|
|
158 |
for col in self.dataset.columns:
|
159 |
if col not in ['video_embed', 'description_embed', 'audio_embed']:
|
160 |
result[col] = self.dataset.iloc[idx][col]
|
|
|
162 |
|
163 |
return results
|
164 |
|
165 |
+
# Use edge_tts for TTS
|
166 |
+
@st.cache_resource
|
167 |
+
def get_speech_model():
|
168 |
+
"""Cache speech model initialization."""
|
169 |
+
return edge_tts.Communicate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
async def generate_speech(text, voice=None):
|
|
|
172 |
if not text.strip():
|
173 |
return None
|
174 |
+
if not voice:
|
175 |
+
voice = st.session_state['tts_voice']
|
176 |
try:
|
177 |
+
communicate = get_speech_model()(text, voice)
|
178 |
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
179 |
await communicate.save(audio_file)
|
180 |
return audio_file
|
|
|
182 |
st.error(f"Error generating speech: {e}")
|
183 |
return None
|
184 |
|
185 |
+
def transcribe_audio(audio_path):
|
186 |
+
"""Transcribe audio using Whisper."""
|
187 |
+
try:
|
188 |
+
with open(audio_path, "rb") as f:
|
189 |
+
transcription = openai.Audio.transcribe("whisper-1", f)
|
190 |
+
return transcription["text"].strip()
|
191 |
+
except Exception as e:
|
192 |
+
st.error(f"Error transcribing audio: {e}")
|
193 |
+
return ""
|
194 |
+
|
195 |
def show_file_manager():
|
196 |
"""Display file manager interface"""
|
197 |
st.subheader("π File Manager")
|
|
|
|
|
198 |
col1, col2 = st.columns(2)
|
199 |
with col1:
|
200 |
uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3'])
|
|
|
202 |
with open(uploaded_file.name, "wb") as f:
|
203 |
f.write(uploaded_file.getvalue())
|
204 |
st.success(f"Uploaded: {uploaded_file.name}")
|
205 |
+
st.experimental_rerun()
|
206 |
|
207 |
with col2:
|
208 |
if st.button("π Clear All Files"):
|
209 |
for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
|
210 |
os.remove(f)
|
211 |
st.success("All files cleared!")
|
212 |
+
st.experimental_rerun()
|
213 |
|
|
|
214 |
files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
|
215 |
if files:
|
216 |
st.write("### Existing Files")
|
|
|
219 |
if f.endswith('.mp3'):
|
220 |
st.audio(f)
|
221 |
else:
|
222 |
+
with open(f, 'r', encoding='utf-8') as file:
|
223 |
st.text_area("Content", file.read(), height=100)
|
224 |
if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
|
225 |
os.remove(f)
|
226 |
+
st.experimental_rerun()
|
227 |
|
228 |
+
##########################
|
229 |
+
# Arxiv Integration #
|
230 |
+
##########################
|
|
|
231 |
|
232 |
+
# You need to implement or integrate perform_ai_lookup from your second app into this code.
|
233 |
+
# This is a placeholder. Replace with your actual perform_ai_lookup function logic.
|
234 |
+
# Ensure you have your Arxiv RAG model endpoint available.
|
|
|
235 |
|
236 |
+
# Example placeholder implementation (replace with your actual second app code):
|
237 |
+
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False):
|
238 |
+
# Placeholder: In your real code, you'll call your Arxiv RAG endpoint and get results.
|
239 |
+
# Here we just simulate a response.
|
240 |
+
mock_answer = f"This is a mock Arxiv response for query: {q}.\nReferences:\n[Paper 1] Example Title"
|
241 |
+
st.markdown(f"**Arxiv Search Results for '{q}':**\n\n{mock_answer}")
|
242 |
+
|
243 |
+
if vocal_summary:
|
244 |
+
audio_file = asyncio.run(generate_speech("This is a spoken summary of Arxiv results."))
|
245 |
+
if audio_file:
|
246 |
+
st.audio(audio_file)
|
247 |
+
|
248 |
+
# Add any other logic: extended_refs, titles_summary, etc.
|
249 |
+
return mock_answer
|
250 |
|
251 |
+
############################
|
252 |
+
# Main App Layout & Logic #
|
253 |
+
############################
|
254 |
def main():
|
255 |
+
st.title("π₯ Video & Arxiv Search with Voice")
|
256 |
|
257 |
+
# Initialize search class
|
258 |
search = VideoSearch()
|
259 |
|
260 |
# Create tabs
|
261 |
+
tab1, tab2, tab3, tab4 = st.tabs(["π Search", "ποΈ Voice Input", "π Arxiv", "π Files"])
|
262 |
|
263 |
+
# ---- Tab 1: Video Search ----
|
264 |
with tab1:
|
265 |
st.subheader("Search Videos")
|
|
|
|
|
266 |
col1, col2 = st.columns([3, 1])
|
267 |
with col1:
|
268 |
query = st.text_input("Enter your search query:",
|
269 |
+
value="ancient" if not st.session_state['initial_search_done'] else "")
|
270 |
with col2:
|
271 |
search_column = st.selectbox("Search in field:",
|
272 |
["All Fields"] + st.session_state['search_columns'])
|
|
|
276 |
num_results = st.slider("Number of results:", 1, 100, 20)
|
277 |
with col4:
|
278 |
search_button = st.button("π Search")
|
279 |
+
|
|
|
280 |
if (search_button or not st.session_state['initial_search_done']) and query:
|
281 |
st.session_state['initial_search_done'] = True
|
282 |
selected_column = None if search_column == "All Fields" else search_column
|
|
|
286 |
st.session_state['search_history'].append({
|
287 |
'query': query,
|
288 |
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
289 |
+
'results': results[:5]
|
290 |
})
|
291 |
|
292 |
for i, result in enumerate(results, 1):
|
293 |
+
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=(i==1)):
|
|
|
294 |
cols = st.columns([2, 1])
|
295 |
with cols[0]:
|
296 |
st.markdown("**Description:**")
|
|
|
308 |
audio_file = asyncio.run(generate_speech(summary))
|
309 |
if audio_file:
|
310 |
st.audio(audio_file)
|
311 |
+
# Optionally delete after playing:
|
312 |
+
# if os.path.exists(audio_file):
|
313 |
+
# os.remove(audio_file)
|
314 |
+
|
315 |
+
# ---- Tab 2: Voice Input ----
|
316 |
with tab2:
|
317 |
st.subheader("Voice Input")
|
318 |
|
319 |
+
st.write("ποΈ Record your voice and automatically transcribe to text:")
|
320 |
+
audio_bytes = audio_recorder()
|
321 |
+
if audio_bytes:
|
322 |
+
# Save the recorded audio for transcription
|
323 |
+
audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
|
324 |
+
with open(audio_path, "wb") as f:
|
325 |
+
f.write(audio_bytes)
|
326 |
+
st.success("Audio recorded successfully!")
|
327 |
+
|
328 |
+
# Transcribe using Whisper
|
329 |
+
voice_query = transcribe_audio(audio_path)
|
330 |
+
if voice_query:
|
331 |
+
st.markdown("**Transcribed Text:**")
|
332 |
+
st.write(voice_query)
|
333 |
+
st.session_state['last_voice_input'] = voice_query
|
334 |
+
|
335 |
+
if st.button("π Search from Voice"):
|
336 |
+
results = search.search(voice_query, None, 20)
|
337 |
+
for i, result in enumerate(results, 1):
|
338 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
339 |
+
st.write(result['description'])
|
340 |
+
if result.get('youtube_id'):
|
341 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
|
342 |
+
|
343 |
+
# Clean up
|
344 |
+
if os.path.exists(audio_path):
|
345 |
+
os.remove(audio_path)
|
346 |
|
347 |
+
# ---- Tab 3: Arxiv Search ----
|
348 |
with tab3:
|
349 |
+
st.subheader("Arxiv Search")
|
350 |
+
q = st.text_input("Enter your Arxiv search query:", value=st.session_state['arxiv_last_query'])
|
351 |
+
vocal_summary = st.checkbox("π Short Audio Summary", value=True)
|
352 |
+
extended_refs = st.checkbox("π Extended References", value=False)
|
353 |
+
titles_summary = st.checkbox("π Titles Only", value=True)
|
354 |
+
full_audio = st.checkbox("π Full Audio Results", value=False)
|
355 |
+
|
356 |
+
if st.button("π Arxiv Search"):
|
357 |
+
st.session_state['arxiv_last_query'] = q
|
358 |
+
perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs,
|
359 |
+
titles_summary=titles_summary, full_audio=full_audio)
|
360 |
+
|
361 |
+
# ---- Tab 4: File Manager ----
|
362 |
+
with tab4:
|
363 |
show_file_manager()
|
364 |
|
365 |
# Sidebar
|
366 |
with st.sidebar:
|
367 |
st.subheader("βοΈ Settings & History")
|
|
|
368 |
if st.button("ποΈ Clear History"):
|
369 |
st.session_state['search_history'] = []
|
370 |
+
st.experimental_rerun()
|
371 |
|
372 |
st.markdown("### Recent Searches")
|
373 |
for entry in reversed(st.session_state['search_history'][-5:]):
|
374 |
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
|
375 |
for i, result in enumerate(entry['results'], 1):
|
376 |
st.write(f"{i}. {result['description'][:100]}...")
|
377 |
+
|
378 |
st.markdown("### Voice Settings")
|
379 |
+
st.selectbox("TTS Voice:",
|
380 |
+
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
|
381 |
+
key="tts_voice")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
|
383 |
if __name__ == "__main__":
|
384 |
+
main()
|