Update backup10.app.py
Browse files- backup10.app.py +125 -205
backup10.app.py
CHANGED
|
@@ -1,31 +1,24 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
-
from sentence_transformers import SentenceTransformer
|
| 5 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
-
import torch
|
| 7 |
import json
|
| 8 |
import os
|
| 9 |
import glob
|
| 10 |
import random
|
| 11 |
from pathlib import Path
|
| 12 |
-
from datetime import datetime
|
| 13 |
import edge_tts
|
| 14 |
import asyncio
|
| 15 |
import requests
|
| 16 |
-
from collections import defaultdict
|
| 17 |
import streamlit.components.v1 as components
|
| 18 |
-
from urllib.parse import quote
|
| 19 |
-
from xml.etree import ElementTree as ET
|
| 20 |
-
from datasets import load_dataset
|
| 21 |
import base64
|
| 22 |
import re
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# -------------------- Configuration & Constants --------------------
|
| 25 |
USER_NAMES = [
|
| 26 |
-
"
|
| 27 |
-
"Casey", "Jesse", "Reese", "Skyler", "Ellis", "Devon", "Aubrey", "Kendall",
|
| 28 |
-
"Parker", "Dakota", "Sage", "Finley"
|
| 29 |
]
|
| 30 |
|
| 31 |
ENGLISH_VOICES = [
|
|
@@ -34,9 +27,10 @@ ENGLISH_VOICES = [
|
|
| 34 |
"en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural"
|
| 35 |
]
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
ROWS_PER_PAGE = 100
|
| 38 |
-
MIN_SEARCH_SCORE = 0.3
|
| 39 |
-
EXACT_MATCH_BOOST = 2.0
|
| 40 |
SAVED_INPUTS_DIR = "saved_inputs"
|
| 41 |
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True)
|
| 42 |
|
|
@@ -47,7 +41,6 @@ SESSION_VARS = {
|
|
| 47 |
'should_rerun': False,
|
| 48 |
'search_columns': [],
|
| 49 |
'initial_search_done': False,
|
| 50 |
-
'tts_voice': "en-US-AriaNeural",
|
| 51 |
'arxiv_last_query': "",
|
| 52 |
'dataset_loaded': False,
|
| 53 |
'current_page': 0,
|
|
@@ -59,17 +52,14 @@ SESSION_VARS = {
|
|
| 59 |
'voice_text': None,
|
| 60 |
'user_name': random.choice(USER_NAMES),
|
| 61 |
'max_items': 100,
|
| 62 |
-
'global_voice': "en-US-AriaNeural"
|
|
|
|
| 63 |
}
|
| 64 |
|
| 65 |
for var, default in SESSION_VARS.items():
|
| 66 |
if var not in st.session_state:
|
| 67 |
st.session_state[var] = default
|
| 68 |
|
| 69 |
-
@st.cache_resource
|
| 70 |
-
def get_model():
|
| 71 |
-
return SentenceTransformer('all-MiniLM-L6-v2')
|
| 72 |
-
|
| 73 |
def create_voice_component():
|
| 74 |
mycomponent = components.declare_component(
|
| 75 |
"mycomponent",
|
|
@@ -85,19 +75,17 @@ def clean_for_speech(text: str) -> str:
|
|
| 85 |
text = re.sub(r"\s+", " ", text).strip()
|
| 86 |
return text
|
| 87 |
|
| 88 |
-
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural"
|
| 89 |
text = clean_for_speech(text)
|
| 90 |
if not text.strip():
|
| 91 |
return None
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
|
| 95 |
-
out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
| 96 |
await communicate.save(out_fn)
|
| 97 |
return out_fn
|
| 98 |
|
| 99 |
def speak_with_edge_tts(text, voice="en-US-AriaNeural"):
|
| 100 |
-
return asyncio.run(edge_tts_generate_audio(text, voice
|
| 101 |
|
| 102 |
def play_and_download_audio(file_path):
|
| 103 |
if file_path and os.path.exists(file_path):
|
|
@@ -138,7 +126,6 @@ def list_saved_inputs():
|
|
| 138 |
return files
|
| 139 |
|
| 140 |
def parse_md_file(fpath):
|
| 141 |
-
# Extract user and text from md
|
| 142 |
user_line = ""
|
| 143 |
ts_line = ""
|
| 144 |
content_lines = []
|
|
@@ -154,139 +141,7 @@ def parse_md_file(fpath):
|
|
| 154 |
content = "\n".join(content_lines).strip()
|
| 155 |
return user_line, ts_line, content
|
| 156 |
|
| 157 |
-
def fetch_dataset_info(dataset_id, token):
|
| 158 |
-
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
|
| 159 |
-
try:
|
| 160 |
-
response = requests.get(info_url, timeout=30)
|
| 161 |
-
if response.status_code == 200:
|
| 162 |
-
return response.json()
|
| 163 |
-
except Exception:
|
| 164 |
-
pass
|
| 165 |
-
return None
|
| 166 |
-
|
| 167 |
-
@st.cache_data
|
| 168 |
-
def get_dataset_info(dataset_id, token):
|
| 169 |
-
try:
|
| 170 |
-
dataset = load_dataset(dataset_id, token=token, streaming=True)
|
| 171 |
-
return dataset['train'].info
|
| 172 |
-
except:
|
| 173 |
-
return None
|
| 174 |
-
|
| 175 |
-
@st.cache_data
|
| 176 |
-
def load_dataset_page(dataset_id, token, page, rows_per_page):
|
| 177 |
-
try:
|
| 178 |
-
start_idx = page * rows_per_page
|
| 179 |
-
end_idx = start_idx + rows_per_page
|
| 180 |
-
dataset = load_dataset(
|
| 181 |
-
dataset_id,
|
| 182 |
-
token=token,
|
| 183 |
-
streaming=False,
|
| 184 |
-
split=f'train[{start_idx}:{end_idx}]'
|
| 185 |
-
)
|
| 186 |
-
return pd.DataFrame(dataset)
|
| 187 |
-
except:
|
| 188 |
-
return pd.DataFrame()
|
| 189 |
-
|
| 190 |
-
class FastDatasetSearcher:
|
| 191 |
-
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
|
| 192 |
-
self.dataset_id = dataset_id
|
| 193 |
-
self.text_model = get_model()
|
| 194 |
-
self.token = os.environ.get('DATASET_KEY')
|
| 195 |
-
|
| 196 |
-
def load_page(self, page=0):
|
| 197 |
-
return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)
|
| 198 |
-
|
| 199 |
-
def quick_search(self, query, df):
|
| 200 |
-
if df.empty or not query.strip():
|
| 201 |
-
return df
|
| 202 |
-
|
| 203 |
-
try:
|
| 204 |
-
searchable_cols = []
|
| 205 |
-
if len(df) > 0:
|
| 206 |
-
for col in df.columns:
|
| 207 |
-
sample_val = df[col].iloc[0]
|
| 208 |
-
if not isinstance(sample_val, (np.ndarray, bytes)):
|
| 209 |
-
searchable_cols.append(col)
|
| 210 |
-
|
| 211 |
-
query_lower = query.lower()
|
| 212 |
-
query_terms = set(query_lower.split())
|
| 213 |
-
query_embedding = self.text_model.encode([query], show_progress_bar=False)[0]
|
| 214 |
-
|
| 215 |
-
scores = []
|
| 216 |
-
matched_any = []
|
| 217 |
-
|
| 218 |
-
for _, row in df.iterrows():
|
| 219 |
-
text_parts = []
|
| 220 |
-
row_matched = False
|
| 221 |
-
exact_match = False
|
| 222 |
-
priority_fields = ['description', 'matched_text']
|
| 223 |
-
other_fields = [col for col in searchable_cols if col not in priority_fields]
|
| 224 |
-
|
| 225 |
-
for col in priority_fields:
|
| 226 |
-
if col in row:
|
| 227 |
-
val = row[col]
|
| 228 |
-
if val is not None:
|
| 229 |
-
val_str = str(val).lower()
|
| 230 |
-
if query_lower in val_str.split():
|
| 231 |
-
exact_match = True
|
| 232 |
-
if any(term in val_str.split() for term in query_terms):
|
| 233 |
-
row_matched = True
|
| 234 |
-
text_parts.append(str(val))
|
| 235 |
-
|
| 236 |
-
for col in other_fields:
|
| 237 |
-
val = row[col]
|
| 238 |
-
if val is not None:
|
| 239 |
-
val_str = str(val).lower()
|
| 240 |
-
if query_lower in val_str.split():
|
| 241 |
-
exact_match = True
|
| 242 |
-
if any(term in val_str.split() for term in query_terms):
|
| 243 |
-
row_matched = True
|
| 244 |
-
text_parts.append(str(val))
|
| 245 |
-
|
| 246 |
-
text = ' '.join(text_parts)
|
| 247 |
-
if text.strip():
|
| 248 |
-
text_tokens = set(text.lower().split())
|
| 249 |
-
matching_terms = query_terms.intersection(text_tokens)
|
| 250 |
-
keyword_score = len(matching_terms) / len(query_terms) if len(query_terms) > 0 else 0.0
|
| 251 |
-
|
| 252 |
-
text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
|
| 253 |
-
semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0])
|
| 254 |
-
|
| 255 |
-
combined_score = 0.7 * keyword_score + 0.3 * semantic_score
|
| 256 |
-
|
| 257 |
-
if exact_match:
|
| 258 |
-
combined_score *= EXACT_MATCH_BOOST
|
| 259 |
-
elif row_matched:
|
| 260 |
-
combined_score *= 1.2
|
| 261 |
-
else:
|
| 262 |
-
combined_score = 0.0
|
| 263 |
-
row_matched = False
|
| 264 |
-
|
| 265 |
-
scores.append(combined_score)
|
| 266 |
-
matched_any.append(row_matched)
|
| 267 |
-
|
| 268 |
-
results_df = df.copy()
|
| 269 |
-
results_df['score'] = scores
|
| 270 |
-
results_df['matched'] = matched_any
|
| 271 |
-
|
| 272 |
-
filtered_df = results_df[
|
| 273 |
-
(results_df['matched']) |
|
| 274 |
-
(results_df['score'] > MIN_SEARCH_SCORE)
|
| 275 |
-
]
|
| 276 |
-
|
| 277 |
-
return filtered_df.sort_values('score', ascending=False)
|
| 278 |
-
except:
|
| 279 |
-
return df
|
| 280 |
-
|
| 281 |
-
def play_text(text):
|
| 282 |
-
voice = st.session_state.get('global_voice', "en-US-AriaNeural")
|
| 283 |
-
audio_file = speak_with_edge_tts(text, voice=voice)
|
| 284 |
-
if audio_file:
|
| 285 |
-
play_and_download_audio(audio_file)
|
| 286 |
-
|
| 287 |
def arxiv_search(query, max_results=3):
|
| 288 |
-
# Simple arXiv search using RSS (for demonstration)
|
| 289 |
-
# In production, use official arXiv API or a library.
|
| 290 |
base_url = "http://export.arxiv.org/api/query"
|
| 291 |
params = {
|
| 292 |
'search_query': query.replace(' ', '+'),
|
|
@@ -302,29 +157,75 @@ def arxiv_search(query, max_results=3):
|
|
| 302 |
for entry in entries:
|
| 303 |
title = entry.find('a:title', ns).text.strip()
|
| 304 |
summary = entry.find('a:summary', ns).text.strip()
|
| 305 |
-
# Just truncating summary for demo
|
| 306 |
summary_short = summary[:300] + "..."
|
| 307 |
results.append((title, summary_short))
|
| 308 |
return results
|
| 309 |
return []
|
| 310 |
|
| 311 |
def summarize_arxiv_results(results):
|
| 312 |
-
# Just combine titles and short summaries
|
| 313 |
lines = []
|
| 314 |
for i, (title, summary) in enumerate(results, 1):
|
| 315 |
lines.append(f"Result {i}: {title}\n{summary}\n")
|
| 316 |
return "\n\n".join(lines)
|
| 317 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
def main():
|
| 319 |
st.title("ποΈ Voice Chat & Search")
|
| 320 |
|
| 321 |
# Sidebar
|
| 322 |
with st.sidebar:
|
| 323 |
# Editable user name
|
| 324 |
-
st.session_state['user_name'] = st.
|
| 325 |
-
|
| 326 |
-
# Global voice selection
|
| 327 |
-
st.session_state['global_voice'] = st.selectbox("Select Global Voice:", ENGLISH_VOICES, index=0)
|
| 328 |
|
| 329 |
st.session_state['max_items'] = st.number_input("Max Items per search iteration:", min_value=1, max_value=1000, value=st.session_state['max_items'])
|
| 330 |
|
|
@@ -339,48 +240,65 @@ def main():
|
|
| 339 |
voice_component = create_voice_component()
|
| 340 |
voice_val = voice_component(my_input_value="Start speaking...")
|
| 341 |
|
| 342 |
-
# Tabs
|
| 343 |
tab1, tab2, tab3, tab4 = st.tabs(["π£οΈ Voice Chat History", "π ArXiv Search", "π Dataset Search", "βοΈ Settings"])
|
| 344 |
|
| 345 |
# ------------------ Voice Chat History -------------------------
|
| 346 |
with tab1:
|
| 347 |
st.subheader("Voice Chat History")
|
| 348 |
-
# List saved inputs and responses and allow playing them
|
| 349 |
files = list_saved_inputs()
|
| 350 |
-
|
|
|
|
| 351 |
user, ts, content = parse_md_file(fpath)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
with st.expander(f"{ts} - {user}", expanded=False):
|
| 353 |
st.write(content)
|
| 354 |
-
|
| 355 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
# ------------------ ArXiv Search -------------------------
|
| 358 |
with tab2:
|
| 359 |
st.subheader("ArXiv Search")
|
| 360 |
-
# If we have a voice_val and autorun with ArXiv chosen:
|
| 361 |
edited_input = st.text_area("Enter or Edit Search Query:", value=(voice_val.strip() if voice_val else ""), height=100)
|
| 362 |
autorun = st.checkbox("β‘ Auto-Run", value=True)
|
| 363 |
-
run_arxiv = st.button("π ArXiv Search")
|
| 364 |
|
| 365 |
input_changed = (edited_input != st.session_state.get('old_val'))
|
|
|
|
| 366 |
if autorun and input_changed and edited_input.strip():
|
| 367 |
-
|
| 368 |
-
# Save user input
|
| 369 |
-
save_input_as_md(st.session_state['user_name'], edited_input, prefix="input")
|
| 370 |
-
with st.spinner("Searching ArXiv..."):
|
| 371 |
-
results = arxiv_search(edited_input)
|
| 372 |
-
if results:
|
| 373 |
-
summary = summarize_arxiv_results(results)
|
| 374 |
-
# Save response
|
| 375 |
-
save_response_as_md(st.session_state['user_name'], summary, prefix="response")
|
| 376 |
-
st.write(summary)
|
| 377 |
-
# Autoplay TTS
|
| 378 |
-
play_text(summary)
|
| 379 |
-
else:
|
| 380 |
-
st.warning("No results found on ArXiv.")
|
| 381 |
-
|
| 382 |
if run_arxiv and edited_input.strip():
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
save_input_as_md(st.session_state['user_name'], edited_input, prefix="input")
|
| 385 |
with st.spinner("Searching ArXiv..."):
|
| 386 |
results = arxiv_search(edited_input)
|
|
@@ -388,33 +306,35 @@ def main():
|
|
| 388 |
summary = summarize_arxiv_results(results)
|
| 389 |
save_response_as_md(st.session_state['user_name'], summary, prefix="response")
|
| 390 |
st.write(summary)
|
| 391 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
else:
|
| 393 |
st.warning("No results found on ArXiv.")
|
| 394 |
|
| 395 |
# ------------------ Dataset Search -------------------------
|
| 396 |
with tab3:
|
| 397 |
st.subheader("Dataset Search")
|
| 398 |
-
|
| 399 |
query = st.text_input("Enter dataset search query:")
|
| 400 |
-
run_ds_search = st.button("Search Dataset")
|
| 401 |
-
num_results = st.slider("Max results:", 1, 100, 20)
|
| 402 |
|
| 403 |
if run_ds_search and query.strip():
|
| 404 |
with st.spinner("Searching dataset..."):
|
| 405 |
-
df =
|
| 406 |
-
results =
|
| 407 |
-
if
|
| 408 |
st.write(f"Found {len(results)} results:")
|
| 409 |
shown = 0
|
| 410 |
-
for i, (_,
|
| 411 |
if shown >= num_results:
|
| 412 |
break
|
| 413 |
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
if k not in ['score', 'matched']:
|
| 417 |
-
st.write(f"**{k}:** {v}")
|
| 418 |
shown += 1
|
| 419 |
else:
|
| 420 |
st.warning("No matching results found.")
|
|
@@ -422,13 +342,13 @@ def main():
|
|
| 422 |
# ------------------ Settings Tab -------------------------
|
| 423 |
with tab4:
|
| 424 |
st.subheader("Settings")
|
| 425 |
-
st.
|
| 426 |
-
|
|
|
|
|
|
|
| 427 |
st.session_state['search_history'] = []
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
# os.remove(fpath)
|
| 431 |
-
st.success("Search history cleared!")
|
| 432 |
|
| 433 |
if __name__ == "__main__":
|
| 434 |
main()
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 4 |
import json
|
| 5 |
import os
|
| 6 |
import glob
|
| 7 |
import random
|
| 8 |
from pathlib import Path
|
| 9 |
+
from datetime import datetime
|
| 10 |
import edge_tts
|
| 11 |
import asyncio
|
| 12 |
import requests
|
|
|
|
| 13 |
import streamlit.components.v1 as components
|
|
|
|
|
|
|
|
|
|
| 14 |
import base64
|
| 15 |
import re
|
| 16 |
+
from xml.etree import ElementTree as ET
|
| 17 |
+
from datasets import load_dataset
|
| 18 |
|
| 19 |
# -------------------- Configuration & Constants --------------------
|
| 20 |
USER_NAMES = [
|
| 21 |
+
"Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William"
|
|
|
|
|
|
|
| 22 |
]
|
| 23 |
|
| 24 |
ENGLISH_VOICES = [
|
|
|
|
| 27 |
"en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural"
|
| 28 |
]
|
| 29 |
|
| 30 |
+
# Map each user to a corresponding voice
|
| 31 |
+
USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES))
|
| 32 |
+
|
| 33 |
ROWS_PER_PAGE = 100
|
|
|
|
|
|
|
| 34 |
SAVED_INPUTS_DIR = "saved_inputs"
|
| 35 |
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True)
|
| 36 |
|
|
|
|
| 41 |
'should_rerun': False,
|
| 42 |
'search_columns': [],
|
| 43 |
'initial_search_done': False,
|
|
|
|
| 44 |
'arxiv_last_query': "",
|
| 45 |
'dataset_loaded': False,
|
| 46 |
'current_page': 0,
|
|
|
|
| 52 |
'voice_text': None,
|
| 53 |
'user_name': random.choice(USER_NAMES),
|
| 54 |
'max_items': 100,
|
| 55 |
+
'global_voice': "en-US-AriaNeural",
|
| 56 |
+
'last_arxiv_input': None
|
| 57 |
}
|
| 58 |
|
| 59 |
for var, default in SESSION_VARS.items():
|
| 60 |
if var not in st.session_state:
|
| 61 |
st.session_state[var] = default
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
def create_voice_component():
|
| 64 |
mycomponent = components.declare_component(
|
| 65 |
"mycomponent",
|
|
|
|
| 75 |
text = re.sub(r"\s+", " ", text).strip()
|
| 76 |
return text
|
| 77 |
|
| 78 |
+
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural"):
|
| 79 |
text = clean_for_speech(text)
|
| 80 |
if not text.strip():
|
| 81 |
return None
|
| 82 |
+
communicate = edge_tts.Communicate(text, voice)
|
| 83 |
+
out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}.mp3"
|
|
|
|
|
|
|
| 84 |
await communicate.save(out_fn)
|
| 85 |
return out_fn
|
| 86 |
|
| 87 |
def speak_with_edge_tts(text, voice="en-US-AriaNeural"):
|
| 88 |
+
return asyncio.run(edge_tts_generate_audio(text, voice))
|
| 89 |
|
| 90 |
def play_and_download_audio(file_path):
|
| 91 |
if file_path and os.path.exists(file_path):
|
|
|
|
| 126 |
return files
|
| 127 |
|
| 128 |
def parse_md_file(fpath):
|
|
|
|
| 129 |
user_line = ""
|
| 130 |
ts_line = ""
|
| 131 |
content_lines = []
|
|
|
|
| 141 |
content = "\n".join(content_lines).strip()
|
| 142 |
return user_line, ts_line, content
|
| 143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
def arxiv_search(query, max_results=3):
|
|
|
|
|
|
|
| 145 |
base_url = "http://export.arxiv.org/api/query"
|
| 146 |
params = {
|
| 147 |
'search_query': query.replace(' ', '+'),
|
|
|
|
| 157 |
for entry in entries:
|
| 158 |
title = entry.find('a:title', ns).text.strip()
|
| 159 |
summary = entry.find('a:summary', ns).text.strip()
|
|
|
|
| 160 |
summary_short = summary[:300] + "..."
|
| 161 |
results.append((title, summary_short))
|
| 162 |
return results
|
| 163 |
return []
|
| 164 |
|
| 165 |
def summarize_arxiv_results(results):
|
|
|
|
| 166 |
lines = []
|
| 167 |
for i, (title, summary) in enumerate(results, 1):
|
| 168 |
lines.append(f"Result {i}: {title}\n{summary}\n")
|
| 169 |
return "\n\n".join(lines)
|
| 170 |
|
| 171 |
+
def simple_dataset_search(query, df):
|
| 172 |
+
if df.empty or not query.strip():
|
| 173 |
+
return pd.DataFrame()
|
| 174 |
+
query_terms = query.lower().split()
|
| 175 |
+
matches = []
|
| 176 |
+
for idx, row in df.iterrows():
|
| 177 |
+
text_parts = []
|
| 178 |
+
for col in df.columns:
|
| 179 |
+
val = row[col]
|
| 180 |
+
if isinstance(val, str):
|
| 181 |
+
text_parts.append(val.lower())
|
| 182 |
+
elif isinstance(val, (int, float)):
|
| 183 |
+
text_parts.append(str(val))
|
| 184 |
+
full_text = " ".join(text_parts)
|
| 185 |
+
if any(qt in full_text for qt in query_terms):
|
| 186 |
+
matches.append(row)
|
| 187 |
+
if matches:
|
| 188 |
+
return pd.DataFrame(matches)
|
| 189 |
+
return pd.DataFrame()
|
| 190 |
+
|
| 191 |
+
from datasets import load_dataset
|
| 192 |
+
|
| 193 |
+
@st.cache_data
|
| 194 |
+
def load_dataset_page(dataset_id, token, page, rows_per_page):
|
| 195 |
+
try:
|
| 196 |
+
start_idx = page * rows_per_page
|
| 197 |
+
end_idx = start_idx + rows_per_page
|
| 198 |
+
dataset = load_dataset(
|
| 199 |
+
dataset_id,
|
| 200 |
+
token=token,
|
| 201 |
+
streaming=False,
|
| 202 |
+
split=f'train[{start_idx}:{end_idx}]'
|
| 203 |
+
)
|
| 204 |
+
return pd.DataFrame(dataset)
|
| 205 |
+
except:
|
| 206 |
+
return pd.DataFrame()
|
| 207 |
+
|
| 208 |
+
class SimpleDatasetSearcher:
|
| 209 |
+
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
|
| 210 |
+
self.dataset_id = dataset_id
|
| 211 |
+
self.token = os.environ.get('DATASET_KEY')
|
| 212 |
+
def load_page(self, page=0):
|
| 213 |
+
return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)
|
| 214 |
+
|
| 215 |
+
def concatenate_mp3(files, output_file):
|
| 216 |
+
# Naive binary concatenation of MP3 files
|
| 217 |
+
with open(output_file, 'wb') as outfile:
|
| 218 |
+
for f in files:
|
| 219 |
+
with open(f, 'rb') as infile:
|
| 220 |
+
outfile.write(infile.read())
|
| 221 |
+
|
| 222 |
def main():
|
| 223 |
st.title("ποΈ Voice Chat & Search")
|
| 224 |
|
| 225 |
# Sidebar
|
| 226 |
with st.sidebar:
|
| 227 |
# Editable user name
|
| 228 |
+
st.session_state['user_name'] = st.selectbox("Current User:", USER_NAMES, index=0)
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
st.session_state['max_items'] = st.number_input("Max Items per search iteration:", min_value=1, max_value=1000, value=st.session_state['max_items'])
|
| 231 |
|
|
|
|
| 240 |
voice_component = create_voice_component()
|
| 241 |
voice_val = voice_component(my_input_value="Start speaking...")
|
| 242 |
|
| 243 |
+
# Tabs
|
| 244 |
tab1, tab2, tab3, tab4 = st.tabs(["π£οΈ Voice Chat History", "π ArXiv Search", "π Dataset Search", "βοΈ Settings"])
|
| 245 |
|
| 246 |
# ------------------ Voice Chat History -------------------------
|
| 247 |
with tab1:
|
| 248 |
st.subheader("Voice Chat History")
|
|
|
|
| 249 |
files = list_saved_inputs()
|
| 250 |
+
conversation = []
|
| 251 |
+
for fpath in files:
|
| 252 |
user, ts, content = parse_md_file(fpath)
|
| 253 |
+
conversation.append((user, ts, content, fpath))
|
| 254 |
+
|
| 255 |
+
# Enumerate to ensure unique keys
|
| 256 |
+
for i, (user, ts, content, fpath) in enumerate(reversed(conversation), start=1):
|
| 257 |
with st.expander(f"{ts} - {user}", expanded=False):
|
| 258 |
st.write(content)
|
| 259 |
+
# Make button key unique by including i
|
| 260 |
+
if st.button(f"π Read Aloud {ts}-{user}", key=f"read_{i}_{fpath}"):
|
| 261 |
+
voice = USER_VOICES.get(user, "en-US-AriaNeural")
|
| 262 |
+
audio_file = speak_with_edge_tts(content, voice=voice)
|
| 263 |
+
if audio_file:
|
| 264 |
+
play_and_download_audio(audio_file)
|
| 265 |
+
|
| 266 |
+
# Read entire conversation
|
| 267 |
+
if st.button("π Read Conversation", key="read_conversation_all"):
|
| 268 |
+
# conversation is currently reversed, re-reverse to get chronological
|
| 269 |
+
conversation_chrono = list(reversed(conversation))
|
| 270 |
+
mp3_files = []
|
| 271 |
+
for user, ts, content, fpath in conversation_chrono:
|
| 272 |
+
voice = USER_VOICES.get(user, "en-US-AriaNeural")
|
| 273 |
+
audio_file = speak_with_edge_tts(content, voice=voice)
|
| 274 |
+
if audio_file:
|
| 275 |
+
mp3_files.append(audio_file)
|
| 276 |
+
st.write(f"**{user} ({ts}):**")
|
| 277 |
+
play_and_download_audio(audio_file)
|
| 278 |
+
|
| 279 |
+
if mp3_files:
|
| 280 |
+
combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
| 281 |
+
concatenate_mp3(mp3_files, combined_file)
|
| 282 |
+
st.write("**Full Conversation Audio:**")
|
| 283 |
+
play_and_download_audio(combined_file)
|
| 284 |
|
| 285 |
# ------------------ ArXiv Search -------------------------
|
| 286 |
with tab2:
|
| 287 |
st.subheader("ArXiv Search")
|
|
|
|
| 288 |
edited_input = st.text_area("Enter or Edit Search Query:", value=(voice_val.strip() if voice_val else ""), height=100)
|
| 289 |
autorun = st.checkbox("β‘ Auto-Run", value=True)
|
| 290 |
+
run_arxiv = st.button("π ArXiv Search", key="run_arxiv_button")
|
| 291 |
|
| 292 |
input_changed = (edited_input != st.session_state.get('old_val'))
|
| 293 |
+
should_run_arxiv = False
|
| 294 |
if autorun and input_changed and edited_input.strip():
|
| 295 |
+
should_run_arxiv = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
if run_arxiv and edited_input.strip():
|
| 297 |
+
should_run_arxiv = True
|
| 298 |
+
|
| 299 |
+
if should_run_arxiv and st.session_state['last_arxiv_input'] != edited_input:
|
| 300 |
+
st.session_state['old_val'] = edited_input
|
| 301 |
+
st.session_state['last_arxiv_input'] = edited_input
|
| 302 |
save_input_as_md(st.session_state['user_name'], edited_input, prefix="input")
|
| 303 |
with st.spinner("Searching ArXiv..."):
|
| 304 |
results = arxiv_search(edited_input)
|
|
|
|
| 306 |
summary = summarize_arxiv_results(results)
|
| 307 |
save_response_as_md(st.session_state['user_name'], summary, prefix="response")
|
| 308 |
st.write(summary)
|
| 309 |
+
# Play summary aloud
|
| 310 |
+
voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural")
|
| 311 |
+
audio_file = speak_with_edge_tts(summary, voice=voice)
|
| 312 |
+
if audio_file:
|
| 313 |
+
play_and_download_audio(audio_file)
|
| 314 |
else:
|
| 315 |
st.warning("No results found on ArXiv.")
|
| 316 |
|
| 317 |
# ------------------ Dataset Search -------------------------
|
| 318 |
with tab3:
|
| 319 |
st.subheader("Dataset Search")
|
| 320 |
+
ds_searcher = SimpleDatasetSearcher()
|
| 321 |
query = st.text_input("Enter dataset search query:")
|
| 322 |
+
run_ds_search = st.button("Search Dataset", key="ds_search_button")
|
| 323 |
+
num_results = st.slider("Max results:", 1, 100, 20, key="ds_max_results")
|
| 324 |
|
| 325 |
if run_ds_search and query.strip():
|
| 326 |
with st.spinner("Searching dataset..."):
|
| 327 |
+
df = ds_searcher.load_page(0)
|
| 328 |
+
results = simple_dataset_search(query, df)
|
| 329 |
+
if not results.empty:
|
| 330 |
st.write(f"Found {len(results)} results:")
|
| 331 |
shown = 0
|
| 332 |
+
for i, (_, row) in enumerate(results.iterrows(), 1):
|
| 333 |
if shown >= num_results:
|
| 334 |
break
|
| 335 |
with st.expander(f"Result {i}", expanded=(i==1)):
|
| 336 |
+
for k, v in row.items():
|
| 337 |
+
st.write(f"**{k}:** {v}")
|
|
|
|
|
|
|
| 338 |
shown += 1
|
| 339 |
else:
|
| 340 |
st.warning("No matching results found.")
|
|
|
|
| 342 |
# ------------------ Settings Tab -------------------------
|
| 343 |
with tab4:
|
| 344 |
st.subheader("Settings")
|
| 345 |
+
if st.button("ποΈ Clear Search History", key="clear_history"):
|
| 346 |
+
# Delete all files
|
| 347 |
+
for fpath in list_saved_inputs():
|
| 348 |
+
os.remove(fpath)
|
| 349 |
st.session_state['search_history'] = []
|
| 350 |
+
st.success("Search history cleared for everyone!")
|
| 351 |
+
st.rerun()
|
|
|
|
|
|
|
| 352 |
|
| 353 |
if __name__ == "__main__":
|
| 354 |
main()
|