Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
-
from sentence_transformers import SentenceTransformer
|
5 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
-
import torch
|
7 |
import json
|
8 |
import os
|
9 |
import glob
|
@@ -20,7 +17,6 @@ from xml.etree import ElementTree as ET
|
|
20 |
from datasets import load_dataset
|
21 |
|
22 |
# -------------------- Configuration & Constants --------------------
|
23 |
-
# Exactly 11 user names and 11 voices
|
24 |
USER_NAMES = [
|
25 |
"Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William"
|
26 |
]
|
@@ -35,8 +31,6 @@ ENGLISH_VOICES = [
|
|
35 |
USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES))
|
36 |
|
37 |
ROWS_PER_PAGE = 100
|
38 |
-
MIN_SEARCH_SCORE = 0.3
|
39 |
-
EXACT_MATCH_BOOST = 2.0
|
40 |
SAVED_INPUTS_DIR = "saved_inputs"
|
41 |
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True)
|
42 |
|
@@ -59,17 +53,13 @@ SESSION_VARS = {
|
|
59 |
'user_name': random.choice(USER_NAMES),
|
60 |
'max_items': 100,
|
61 |
'global_voice': "en-US-AriaNeural",
|
62 |
-
'last_arxiv_input': None
|
63 |
}
|
64 |
|
65 |
for var, default in SESSION_VARS.items():
|
66 |
if var not in st.session_state:
|
67 |
st.session_state[var] = default
|
68 |
|
69 |
-
@st.cache_resource
|
70 |
-
def get_model():
|
71 |
-
return SentenceTransformer('all-MiniLM-L6-v2')
|
72 |
-
|
73 |
def create_voice_component():
|
74 |
mycomponent = components.declare_component(
|
75 |
"mycomponent",
|
@@ -178,14 +168,12 @@ def summarize_arxiv_results(results):
|
|
178 |
lines.append(f"Result {i}: {title}\n{summary}\n")
|
179 |
return "\n\n".join(lines)
|
180 |
|
181 |
-
# Simple dataset search: text-based substring search
|
182 |
def simple_dataset_search(query, df):
|
183 |
if df.empty or not query.strip():
|
184 |
return pd.DataFrame()
|
185 |
query_terms = query.lower().split()
|
186 |
matches = []
|
187 |
for idx, row in df.iterrows():
|
188 |
-
# Combine all text fields into one string
|
189 |
text_parts = []
|
190 |
for col in df.columns:
|
191 |
val = row[col]
|
@@ -194,13 +182,14 @@ def simple_dataset_search(query, df):
|
|
194 |
elif isinstance(val, (int, float)):
|
195 |
text_parts.append(str(val))
|
196 |
full_text = " ".join(text_parts)
|
197 |
-
# Check if any query term is in full_text
|
198 |
if any(qt in full_text for qt in query_terms):
|
199 |
matches.append(row)
|
200 |
if matches:
|
201 |
return pd.DataFrame(matches)
|
202 |
return pd.DataFrame()
|
203 |
|
|
|
|
|
204 |
@st.cache_data
|
205 |
def load_dataset_page(dataset_id, token, page, rows_per_page):
|
206 |
try:
|
@@ -261,34 +250,33 @@ def main():
|
|
261 |
conversation = []
|
262 |
for fpath in files:
|
263 |
user, ts, content = parse_md_file(fpath)
|
264 |
-
conversation.append((user, ts, content))
|
265 |
-
|
|
|
|
|
266 |
with st.expander(f"{ts} - {user}", expanded=False):
|
267 |
st.write(content)
|
268 |
-
|
|
|
269 |
voice = USER_VOICES.get(user, "en-US-AriaNeural")
|
270 |
audio_file = speak_with_edge_tts(content, voice=voice)
|
271 |
if audio_file:
|
272 |
play_and_download_audio(audio_file)
|
273 |
|
274 |
# Read entire conversation
|
275 |
-
if st.button("π Read Conversation"):
|
276 |
-
#
|
277 |
-
|
278 |
-
# They are sorted ascending, so conversation is appended ascending.
|
279 |
-
# It's safe to assume files list is chronological by filename.
|
280 |
mp3_files = []
|
281 |
-
for user, ts, content in
|
282 |
voice = USER_VOICES.get(user, "en-US-AriaNeural")
|
283 |
audio_file = speak_with_edge_tts(content, voice=voice)
|
284 |
if audio_file:
|
285 |
mp3_files.append(audio_file)
|
286 |
-
# Show each line's MP3
|
287 |
st.write(f"**{user} ({ts}):**")
|
288 |
play_and_download_audio(audio_file)
|
289 |
|
290 |
if mp3_files:
|
291 |
-
# Concatenate all mp3 files into one
|
292 |
combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
293 |
concatenate_mp3(mp3_files, combined_file)
|
294 |
st.write("**Full Conversation Audio:**")
|
@@ -299,50 +287,43 @@ def main():
|
|
299 |
st.subheader("ArXiv Search")
|
300 |
edited_input = st.text_area("Enter or Edit Search Query:", value=(voice_val.strip() if voice_val else ""), height=100)
|
301 |
autorun = st.checkbox("β‘ Auto-Run", value=True)
|
302 |
-
run_arxiv = st.button("π ArXiv Search")
|
303 |
|
304 |
input_changed = (edited_input != st.session_state.get('old_val'))
|
305 |
-
# Only run once:
|
306 |
-
# Conditions to run ArXiv search:
|
307 |
-
# - If autorun and input_changed and edited_input non-empty
|
308 |
-
# - Or if run_arxiv button is pressed and edited_input non-empty
|
309 |
should_run_arxiv = False
|
310 |
if autorun and input_changed and edited_input.strip():
|
311 |
should_run_arxiv = True
|
312 |
if run_arxiv and edited_input.strip():
|
313 |
should_run_arxiv = True
|
314 |
|
315 |
-
if should_run_arxiv:
|
316 |
st.session_state['old_val'] = edited_input
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
audio_file
|
330 |
-
|
331 |
-
|
332 |
-
else:
|
333 |
-
st.warning("No results found on ArXiv.")
|
334 |
|
335 |
# ------------------ Dataset Search -------------------------
|
336 |
with tab3:
|
337 |
st.subheader("Dataset Search")
|
338 |
ds_searcher = SimpleDatasetSearcher()
|
339 |
query = st.text_input("Enter dataset search query:")
|
340 |
-
run_ds_search = st.button("Search Dataset")
|
341 |
-
num_results = st.slider("Max results:", 1, 100, 20)
|
342 |
|
343 |
if run_ds_search and query.strip():
|
344 |
with st.spinner("Searching dataset..."):
|
345 |
-
# For simplicity, just load first page
|
346 |
df = ds_searcher.load_page(0)
|
347 |
results = simple_dataset_search(query, df)
|
348 |
if not results.empty:
|
@@ -361,8 +342,7 @@ def main():
|
|
361 |
# ------------------ Settings Tab -------------------------
|
362 |
with tab4:
|
363 |
st.subheader("Settings")
|
364 |
-
|
365 |
-
if st.button("ποΈ Clear Search History"):
|
366 |
# Delete all files
|
367 |
for fpath in list_saved_inputs():
|
368 |
os.remove(fpath)
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
|
|
|
|
|
|
4 |
import json
|
5 |
import os
|
6 |
import glob
|
|
|
17 |
from datasets import load_dataset
|
18 |
|
19 |
# -------------------- Configuration & Constants --------------------
|
|
|
20 |
USER_NAMES = [
|
21 |
"Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William"
|
22 |
]
|
|
|
31 |
USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES))
|
32 |
|
33 |
ROWS_PER_PAGE = 100
|
|
|
|
|
34 |
SAVED_INPUTS_DIR = "saved_inputs"
|
35 |
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True)
|
36 |
|
|
|
53 |
'user_name': random.choice(USER_NAMES),
|
54 |
'max_items': 100,
|
55 |
'global_voice': "en-US-AriaNeural",
|
56 |
+
'last_arxiv_input': None
|
57 |
}
|
58 |
|
59 |
for var, default in SESSION_VARS.items():
|
60 |
if var not in st.session_state:
|
61 |
st.session_state[var] = default
|
62 |
|
|
|
|
|
|
|
|
|
63 |
def create_voice_component():
|
64 |
mycomponent = components.declare_component(
|
65 |
"mycomponent",
|
|
|
168 |
lines.append(f"Result {i}: {title}\n{summary}\n")
|
169 |
return "\n\n".join(lines)
|
170 |
|
|
|
171 |
def simple_dataset_search(query, df):
|
172 |
if df.empty or not query.strip():
|
173 |
return pd.DataFrame()
|
174 |
query_terms = query.lower().split()
|
175 |
matches = []
|
176 |
for idx, row in df.iterrows():
|
|
|
177 |
text_parts = []
|
178 |
for col in df.columns:
|
179 |
val = row[col]
|
|
|
182 |
elif isinstance(val, (int, float)):
|
183 |
text_parts.append(str(val))
|
184 |
full_text = " ".join(text_parts)
|
|
|
185 |
if any(qt in full_text for qt in query_terms):
|
186 |
matches.append(row)
|
187 |
if matches:
|
188 |
return pd.DataFrame(matches)
|
189 |
return pd.DataFrame()
|
190 |
|
191 |
+
from datasets import load_dataset
|
192 |
+
|
193 |
@st.cache_data
|
194 |
def load_dataset_page(dataset_id, token, page, rows_per_page):
|
195 |
try:
|
|
|
250 |
conversation = []
|
251 |
for fpath in files:
|
252 |
user, ts, content = parse_md_file(fpath)
|
253 |
+
conversation.append((user, ts, content, fpath))
|
254 |
+
|
255 |
+
# Enumerate to ensure unique keys
|
256 |
+
for i, (user, ts, content, fpath) in enumerate(reversed(conversation), start=1):
|
257 |
with st.expander(f"{ts} - {user}", expanded=False):
|
258 |
st.write(content)
|
259 |
+
# Make button key unique by including i
|
260 |
+
if st.button(f"π Read Aloud {ts}-{user}", key=f"read_{i}_{fpath}"):
|
261 |
voice = USER_VOICES.get(user, "en-US-AriaNeural")
|
262 |
audio_file = speak_with_edge_tts(content, voice=voice)
|
263 |
if audio_file:
|
264 |
play_and_download_audio(audio_file)
|
265 |
|
266 |
# Read entire conversation
|
267 |
+
if st.button("π Read Conversation", key="read_conversation_all"):
|
268 |
+
# conversation is currently reversed, re-reverse to get chronological
|
269 |
+
conversation_chrono = list(reversed(conversation))
|
|
|
|
|
270 |
mp3_files = []
|
271 |
+
for user, ts, content, fpath in conversation_chrono:
|
272 |
voice = USER_VOICES.get(user, "en-US-AriaNeural")
|
273 |
audio_file = speak_with_edge_tts(content, voice=voice)
|
274 |
if audio_file:
|
275 |
mp3_files.append(audio_file)
|
|
|
276 |
st.write(f"**{user} ({ts}):**")
|
277 |
play_and_download_audio(audio_file)
|
278 |
|
279 |
if mp3_files:
|
|
|
280 |
combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
281 |
concatenate_mp3(mp3_files, combined_file)
|
282 |
st.write("**Full Conversation Audio:**")
|
|
|
287 |
st.subheader("ArXiv Search")
|
288 |
edited_input = st.text_area("Enter or Edit Search Query:", value=(voice_val.strip() if voice_val else ""), height=100)
|
289 |
autorun = st.checkbox("β‘ Auto-Run", value=True)
|
290 |
+
run_arxiv = st.button("π ArXiv Search", key="run_arxiv_button")
|
291 |
|
292 |
input_changed = (edited_input != st.session_state.get('old_val'))
|
|
|
|
|
|
|
|
|
293 |
should_run_arxiv = False
|
294 |
if autorun and input_changed and edited_input.strip():
|
295 |
should_run_arxiv = True
|
296 |
if run_arxiv and edited_input.strip():
|
297 |
should_run_arxiv = True
|
298 |
|
299 |
+
if should_run_arxiv and st.session_state['last_arxiv_input'] != edited_input:
|
300 |
st.session_state['old_val'] = edited_input
|
301 |
+
st.session_state['last_arxiv_input'] = edited_input
|
302 |
+
save_input_as_md(st.session_state['user_name'], edited_input, prefix="input")
|
303 |
+
with st.spinner("Searching ArXiv..."):
|
304 |
+
results = arxiv_search(edited_input)
|
305 |
+
if results:
|
306 |
+
summary = summarize_arxiv_results(results)
|
307 |
+
save_response_as_md(st.session_state['user_name'], summary, prefix="response")
|
308 |
+
st.write(summary)
|
309 |
+
# Play summary aloud
|
310 |
+
voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural")
|
311 |
+
audio_file = speak_with_edge_tts(summary, voice=voice)
|
312 |
+
if audio_file:
|
313 |
+
play_and_download_audio(audio_file)
|
314 |
+
else:
|
315 |
+
st.warning("No results found on ArXiv.")
|
|
|
|
|
316 |
|
317 |
# ------------------ Dataset Search -------------------------
|
318 |
with tab3:
|
319 |
st.subheader("Dataset Search")
|
320 |
ds_searcher = SimpleDatasetSearcher()
|
321 |
query = st.text_input("Enter dataset search query:")
|
322 |
+
run_ds_search = st.button("Search Dataset", key="ds_search_button")
|
323 |
+
num_results = st.slider("Max results:", 1, 100, 20, key="ds_max_results")
|
324 |
|
325 |
if run_ds_search and query.strip():
|
326 |
with st.spinner("Searching dataset..."):
|
|
|
327 |
df = ds_searcher.load_page(0)
|
328 |
results = simple_dataset_search(query, df)
|
329 |
if not results.empty:
|
|
|
342 |
# ------------------ Settings Tab -------------------------
|
343 |
with tab4:
|
344 |
st.subheader("Settings")
|
345 |
+
if st.button("ποΈ Clear Search History", key="clear_history"):
|
|
|
346 |
# Delete all files
|
347 |
for fpath in list_saved_inputs():
|
348 |
os.remove(fpath)
|