File size: 16,666 Bytes
2e6063c
 
 
 
 
 
 
 
 
54e3aa1
2e6063c
 
 
 
 
 
 
 
 
 
 
 
 
54e3aa1
 
 
 
 
 
2e6063c
e9907ed
 
 
 
 
 
2e6063c
 
 
54e3aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9907ed
 
 
54e3aa1
2e6063c
 
 
 
 
e9907ed
 
 
54e3aa1
2e6063c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9907ed
 
2e6063c
 
 
 
 
 
 
e9907ed
2e6063c
 
 
e9907ed
54e3aa1
e9907ed
54e3aa1
 
e9907ed
54e3aa1
 
e9907ed
 
 
 
 
 
 
 
 
 
 
 
54e3aa1
 
 
 
 
 
 
2e6063c
e9907ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e6063c
e9907ed
 
 
2e6063c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16ef1bd
 
 
 
 
2e6063c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54e3aa1
2e6063c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9907ed
2e6063c
 
e9907ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e6063c
e9907ed
 
 
54e3aa1
e9907ed
 
2e6063c
e9907ed
 
2e6063c
e9907ed
2e6063c
e9907ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f63fe3
e9907ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f63fe3
e9907ed
 
3f63fe3
 
 
 
 
 
 
 
 
e9907ed
 
 
 
3f63fe3
 
 
e9907ed
 
3f63fe3
e9907ed
 
 
3f63fe3
e9907ed
 
 
3f63fe3
e9907ed
3f63fe3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
import random
from pathlib import Path
from datetime import datetime, timedelta
import edge_tts
import asyncio
import requests
from collections import defaultdict
import streamlit.components.v1 as components
from urllib.parse import quote
from xml.etree import ElementTree as ET
from datasets import load_dataset
import base64
import re

# -------------------- Configuration & Constants --------------------
USER_NAMES = [
    "Alex", "Jordan", "Taylor", "Morgan", "Rowan", "Avery", "Riley", "Quinn",
    "Casey", "Jesse", "Reese", "Skyler", "Ellis", "Devon", "Aubrey", "Kendall",
    "Parker", "Dakota", "Sage", "Finley"
]

ENGLISH_VOICES = [
    "en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural",
    "en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural",
    "en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural"
]

ROWS_PER_PAGE = 100
MIN_SEARCH_SCORE = 0.3
EXACT_MATCH_BOOST = 2.0
SAVED_INPUTS_DIR = "saved_inputs"
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True)

SESSION_VARS = {
    'search_history': [],
    'last_voice_input': "",
    'transcript_history': [],
    'should_rerun': False,
    'search_columns': [],
    'initial_search_done': False,
    'tts_voice': "en-US-AriaNeural",
    'arxiv_last_query': "",
    'dataset_loaded': False,
    'current_page': 0,
    'data_cache': None,
    'dataset_info': None,
    'nps_submitted': False,
    'nps_last_shown': None,
    'old_val': None,
    'voice_text': None,
    'user_name': random.choice(USER_NAMES),
    'max_items': 100,
    'global_voice': "en-US-AriaNeural"  # Default global voice
}

for var, default in SESSION_VARS.items():
    if var not in st.session_state:
        st.session_state[var] = default

@st.cache_resource
def get_model():
    return SentenceTransformer('all-MiniLM-L6-v2')

def create_voice_component():
    mycomponent = components.declare_component(
        "mycomponent",
        path="mycomponent"
    )
    return mycomponent

def clean_for_speech(text: str) -> str:
    text = text.replace("\n", " ")
    text = text.replace("</s>", " ")
    text = text.replace("#", "")
    text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text

async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
    text = clean_for_speech(text)
    if not text.strip():
        return None
    rate_str = f"{rate:+d}%"
    pitch_str = f"{pitch:+d}Hz"
    communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
    out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
    await communicate.save(out_fn)
    return out_fn

def speak_with_edge_tts(text, voice="en-US-AriaNeural"):
    return asyncio.run(edge_tts_generate_audio(text, voice, 0, 0))

def play_and_download_audio(file_path):
    if file_path and os.path.exists(file_path):
        st.audio(file_path)
        dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
        st.markdown(dl_link, unsafe_allow_html=True)

def generate_filename(prefix, text):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower()
    safe_text = re.sub(r'[-\s]+', '-', safe_text)
    return f"{prefix}_{timestamp}_{safe_text}.md"

def save_input_as_md(user_name, text, prefix="input"):
    if not text.strip():
        return
    fn = generate_filename(prefix, text)
    full_path = os.path.join(SAVED_INPUTS_DIR, fn)
    with open(full_path, 'w', encoding='utf-8') as f:
        f.write(f"# User: {user_name}\n")
        f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
        f.write(text)
    return full_path

def save_response_as_md(user_name, text, prefix="response"):
    if not text.strip():
        return
    fn = generate_filename(prefix, text)
    full_path = os.path.join(SAVED_INPUTS_DIR, fn)
    with open(full_path, 'w', encoding='utf-8') as f:
        f.write(f"# User: {user_name}\n")
        f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
        f.write(text)
    return full_path

def list_saved_inputs():
    files = sorted(glob.glob(os.path.join(SAVED_INPUTS_DIR, "*.md")))
    return files

def parse_md_file(fpath):
    # Extract user and text from md
    user_line = ""
    ts_line = ""
    content_lines = []
    with open(fpath, 'r', encoding='utf-8') as f:
        lines = f.readlines()
    for line in lines:
        if line.startswith("# User:"):
            user_line = line.replace("# User:", "").strip()
        elif line.startswith("**Timestamp:**"):
            ts_line = line.replace("**Timestamp:**", "").strip()
        else:
            content_lines.append(line.strip())
    content = "\n".join(content_lines).strip()
    return user_line, ts_line, content

def fetch_dataset_info(dataset_id, token):
    info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
    try:
        response = requests.get(info_url, timeout=30)
        if response.status_code == 200:
            return response.json()
    except Exception:
        pass
    return None

@st.cache_data
def get_dataset_info(dataset_id, token):
    try:
        dataset = load_dataset(dataset_id, token=token, streaming=True)
        return dataset['train'].info
    except:
        return None

@st.cache_data
def load_dataset_page(dataset_id, token, page, rows_per_page):
    try:
        start_idx = page * rows_per_page
        end_idx = start_idx + rows_per_page
        dataset = load_dataset(
            dataset_id,
            token=token,
            streaming=False,
            split=f'train[{start_idx}:{end_idx}]'
        )
        return pd.DataFrame(dataset)
    except:
        return pd.DataFrame()

class FastDatasetSearcher:
    def __init__(self, dataset_id="tomg-group-umd/cinepile"):
        self.dataset_id = dataset_id
        self.text_model = get_model()
        self.token = os.environ.get('DATASET_KEY')

    def load_page(self, page=0):
        return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)

    def quick_search(self, query, df):
        if df.empty or not query.strip():
            return df
        
        try:
            searchable_cols = []
            if len(df) > 0:
                for col in df.columns:
                    sample_val = df[col].iloc[0] 
                    if not isinstance(sample_val, (np.ndarray, bytes)):
                        searchable_cols.append(col)
            
            query_lower = query.lower()
            query_terms = set(query_lower.split())
            query_embedding = self.text_model.encode([query], show_progress_bar=False)[0]
            
            scores = []
            matched_any = []
            
            for _, row in df.iterrows():
                text_parts = []
                row_matched = False
                exact_match = False
                priority_fields = ['description', 'matched_text']
                other_fields = [col for col in searchable_cols if col not in priority_fields]
                
                for col in priority_fields:
                    if col in row:
                        val = row[col]
                        if val is not None:
                            val_str = str(val).lower()
                            if query_lower in val_str.split():
                                exact_match = True
                            if any(term in val_str.split() for term in query_terms):
                                row_matched = True
                            text_parts.append(str(val))
                
                for col in other_fields:
                    val = row[col]
                    if val is not None:
                        val_str = str(val).lower()
                        if query_lower in val_str.split():
                            exact_match = True
                        if any(term in val_str.split() for term in query_terms):
                            row_matched = True
                        text_parts.append(str(val))
                
                text = ' '.join(text_parts)
                if text.strip():
                    text_tokens = set(text.lower().split())
                    matching_terms = query_terms.intersection(text_tokens)
                    keyword_score = len(matching_terms) / len(query_terms) if len(query_terms) > 0 else 0.0
                    
                    text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
                    semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0])
                    
                    combined_score = 0.7 * keyword_score + 0.3 * semantic_score
                    
                    if exact_match:
                        combined_score *= EXACT_MATCH_BOOST
                    elif row_matched:
                        combined_score *= 1.2
                else:
                    combined_score = 0.0
                    row_matched = False
                
                scores.append(combined_score)
                matched_any.append(row_matched)
            
            results_df = df.copy()
            results_df['score'] = scores
            results_df['matched'] = matched_any
            
            filtered_df = results_df[
                (results_df['matched']) |
                (results_df['score'] > MIN_SEARCH_SCORE)
            ]
            
            return filtered_df.sort_values('score', ascending=False)
        except:
            return df

def play_text(text):
    voice = st.session_state.get('global_voice', "en-US-AriaNeural")
    audio_file = speak_with_edge_tts(text, voice=voice)
    if audio_file:
        play_and_download_audio(audio_file)

def arxiv_search(query, max_results=3):
    # Simple arXiv search using RSS (for demonstration)
    # In production, use official arXiv API or a library.
    base_url = "http://export.arxiv.org/api/query"
    params = {
        'search_query': query.replace(' ', '+'),
        'start': 0,
        'max_results': max_results
    }
    response = requests.get(base_url, params=params, timeout=30)
    if response.status_code == 200:
        root = ET.fromstring(response.text)
        ns = {"a": "http://www.w3.org/2005/Atom"}
        entries = root.findall('a:entry', ns)
        results = []
        for entry in entries:
            title = entry.find('a:title', ns).text.strip()
            summary = entry.find('a:summary', ns).text.strip()
            # Just truncating summary for demo
            summary_short = summary[:300] + "..."
            results.append((title, summary_short))
        return results
    return []

def summarize_arxiv_results(results):
    # Just combine titles and short summaries
    lines = []
    for i, (title, summary) in enumerate(results, 1):
        lines.append(f"Result {i}: {title}\n{summary}\n")
    return "\n\n".join(lines)

def main():
    st.title("πŸŽ™οΈ Voice Chat & Search")

    # Sidebar
    with st.sidebar:
        # Editable user name
        st.session_state['user_name'] = st.text_input("Current User:", value=st.session_state['user_name'])
        
        # Global voice selection
        st.session_state['global_voice'] = st.selectbox("Select Global Voice:", ENGLISH_VOICES, index=0)
        
        st.session_state['max_items'] = st.number_input("Max Items per search iteration:", min_value=1, max_value=1000, value=st.session_state['max_items'])
        
        st.subheader("πŸ“ Saved Inputs & Responses")
        saved_files = list_saved_inputs()
        for fpath in saved_files:
            user, ts, content = parse_md_file(fpath)
            fname = os.path.basename(fpath)
            st.write(f"- {fname} (User: {user})")

    # Create voice component for input
    voice_component = create_voice_component()
    voice_val = voice_component(my_input_value="Start speaking...")

    # Tabs: Voice Chat History, Arxiv Search, Dataset Search, Settings
    tab1, tab2, tab3, tab4 = st.tabs(["πŸ—£οΈ Voice Chat History", "πŸ“š ArXiv Search", "πŸ“Š Dataset Search", "βš™οΈ Settings"])

    # ------------------ Voice Chat History -------------------------
    with tab1:
        st.subheader("Voice Chat History")
        # List saved inputs and responses and allow playing them
        files = list_saved_inputs()
        for fpath in reversed(files):
            user, ts, content = parse_md_file(fpath)
            with st.expander(f"{ts} - {user}", expanded=False):
                st.write(content)
                if st.button("πŸ”Š Read Aloud", key=f"read_{fpath}"):
                    play_text(content)

    # ------------------ ArXiv Search -------------------------
    with tab2:
        st.subheader("ArXiv Search")
        # If we have a voice_val and autorun with ArXiv chosen:
        edited_input = st.text_area("Enter or Edit Search Query:", value=(voice_val.strip() if voice_val else ""), height=100)
        autorun = st.checkbox("⚑ Auto-Run", value=True)
        run_arxiv = st.button("πŸ” ArXiv Search")

        input_changed = (edited_input != st.session_state.get('old_val'))
        if autorun and input_changed and edited_input.strip():
            st.session_state['old_val'] = edited_input
            # Save user input
            save_input_as_md(st.session_state['user_name'], edited_input, prefix="input")
            with st.spinner("Searching ArXiv..."):
                results = arxiv_search(edited_input)
                if results:
                    summary = summarize_arxiv_results(results)
                    # Save response
                    save_response_as_md(st.session_state['user_name'], summary, prefix="response")
                    st.write(summary)
                    # Autoplay TTS
                    play_text(summary)
                else:
                    st.warning("No results found on ArXiv.")

        if run_arxiv and edited_input.strip():
            # Manual trigger
            save_input_as_md(st.session_state['user_name'], edited_input, prefix="input")
            with st.spinner("Searching ArXiv..."):
                results = arxiv_search(edited_input)
                if results:
                    summary = summarize_arxiv_results(results)
                    save_response_as_md(st.session_state['user_name'], summary, prefix="response")
                    st.write(summary)
                    play_text(summary)
                else:
                    st.warning("No results found on ArXiv.")

    # ------------------ Dataset Search -------------------------
    with tab3:
        st.subheader("Dataset Search")
        search = FastDatasetSearcher()
        query = st.text_input("Enter dataset search query:")
        run_ds_search = st.button("Search Dataset")
        num_results = st.slider("Max results:", 1, 100, 20)
        
        if run_ds_search and query.strip():
            with st.spinner("Searching dataset..."):
                df = search.load_page()
                results = search.quick_search(query, df)
                if len(results) > 0:
                    st.write(f"Found {len(results)} results:")
                    shown = 0
                    for i, (_, result) in enumerate(results.iterrows(), 1):
                        if shown >= num_results:
                            break
                        with st.expander(f"Result {i}", expanded=(i==1)):
                            # Just print result keys/values here
                            for k, v in result.items():
                                if k not in ['score', 'matched']:
                                    st.write(f"**{k}:** {v}")
                        shown += 1
                else:
                    st.warning("No matching results found.")

    # ------------------ Settings Tab -------------------------
    with tab4:
        st.subheader("Settings")
        st.write("Adjust voice and search parameters in the sidebar.")
        if st.button("πŸ—‘οΈ Clear Search History"):
            st.session_state['search_history'] = []
            # Optionally delete files:
            # for fpath in list_saved_inputs():
            #     os.remove(fpath)
            st.success("Search history cleared!")

if __name__ == "__main__":
    main()