Spaces:
Sleeping
Sleeping
File size: 16,666 Bytes
2e6063c 54e3aa1 2e6063c 54e3aa1 2e6063c e9907ed 2e6063c 54e3aa1 e9907ed 54e3aa1 2e6063c e9907ed 54e3aa1 2e6063c e9907ed 2e6063c e9907ed 2e6063c e9907ed 54e3aa1 e9907ed 54e3aa1 e9907ed 54e3aa1 e9907ed 54e3aa1 2e6063c e9907ed 2e6063c e9907ed 2e6063c 16ef1bd 2e6063c 54e3aa1 2e6063c e9907ed 2e6063c e9907ed 2e6063c e9907ed 54e3aa1 e9907ed 2e6063c e9907ed 2e6063c e9907ed 2e6063c e9907ed 3f63fe3 e9907ed 3f63fe3 e9907ed 3f63fe3 e9907ed 3f63fe3 e9907ed 3f63fe3 e9907ed 3f63fe3 e9907ed 3f63fe3 e9907ed 3f63fe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
import random
from pathlib import Path
from datetime import datetime, timedelta
import edge_tts
import asyncio
import requests
from collections import defaultdict
import streamlit.components.v1 as components
from urllib.parse import quote
from xml.etree import ElementTree as ET
from datasets import load_dataset
import base64
import re
# -------------------- Configuration & Constants --------------------
USER_NAMES = [
"Alex", "Jordan", "Taylor", "Morgan", "Rowan", "Avery", "Riley", "Quinn",
"Casey", "Jesse", "Reese", "Skyler", "Ellis", "Devon", "Aubrey", "Kendall",
"Parker", "Dakota", "Sage", "Finley"
]
ENGLISH_VOICES = [
"en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural",
"en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural",
"en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural"
]
ROWS_PER_PAGE = 100
MIN_SEARCH_SCORE = 0.3
EXACT_MATCH_BOOST = 2.0
SAVED_INPUTS_DIR = "saved_inputs"
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True)
SESSION_VARS = {
'search_history': [],
'last_voice_input': "",
'transcript_history': [],
'should_rerun': False,
'search_columns': [],
'initial_search_done': False,
'tts_voice': "en-US-AriaNeural",
'arxiv_last_query': "",
'dataset_loaded': False,
'current_page': 0,
'data_cache': None,
'dataset_info': None,
'nps_submitted': False,
'nps_last_shown': None,
'old_val': None,
'voice_text': None,
'user_name': random.choice(USER_NAMES),
'max_items': 100,
'global_voice': "en-US-AriaNeural" # Default global voice
}
for var, default in SESSION_VARS.items():
if var not in st.session_state:
st.session_state[var] = default
@st.cache_resource
def get_model():
return SentenceTransformer('all-MiniLM-L6-v2')
def create_voice_component():
mycomponent = components.declare_component(
"mycomponent",
path="mycomponent"
)
return mycomponent
def clean_for_speech(text: str) -> str:
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
text = clean_for_speech(text)
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
await communicate.save(out_fn)
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural"):
return asyncio.run(edge_tts_generate_audio(text, voice, 0, 0))
def play_and_download_audio(file_path):
if file_path and os.path.exists(file_path):
st.audio(file_path)
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
st.markdown(dl_link, unsafe_allow_html=True)
def generate_filename(prefix, text):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower()
safe_text = re.sub(r'[-\s]+', '-', safe_text)
return f"{prefix}_{timestamp}_{safe_text}.md"
def save_input_as_md(user_name, text, prefix="input"):
if not text.strip():
return
fn = generate_filename(prefix, text)
full_path = os.path.join(SAVED_INPUTS_DIR, fn)
with open(full_path, 'w', encoding='utf-8') as f:
f.write(f"# User: {user_name}\n")
f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
f.write(text)
return full_path
def save_response_as_md(user_name, text, prefix="response"):
if not text.strip():
return
fn = generate_filename(prefix, text)
full_path = os.path.join(SAVED_INPUTS_DIR, fn)
with open(full_path, 'w', encoding='utf-8') as f:
f.write(f"# User: {user_name}\n")
f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
f.write(text)
return full_path
def list_saved_inputs():
files = sorted(glob.glob(os.path.join(SAVED_INPUTS_DIR, "*.md")))
return files
def parse_md_file(fpath):
# Extract user and text from md
user_line = ""
ts_line = ""
content_lines = []
with open(fpath, 'r', encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
if line.startswith("# User:"):
user_line = line.replace("# User:", "").strip()
elif line.startswith("**Timestamp:**"):
ts_line = line.replace("**Timestamp:**", "").strip()
else:
content_lines.append(line.strip())
content = "\n".join(content_lines).strip()
return user_line, ts_line, content
def fetch_dataset_info(dataset_id, token):
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
try:
response = requests.get(info_url, timeout=30)
if response.status_code == 200:
return response.json()
except Exception:
pass
return None
@st.cache_data
def get_dataset_info(dataset_id, token):
try:
dataset = load_dataset(dataset_id, token=token, streaming=True)
return dataset['train'].info
except:
return None
@st.cache_data
def load_dataset_page(dataset_id, token, page, rows_per_page):
try:
start_idx = page * rows_per_page
end_idx = start_idx + rows_per_page
dataset = load_dataset(
dataset_id,
token=token,
streaming=False,
split=f'train[{start_idx}:{end_idx}]'
)
return pd.DataFrame(dataset)
except:
return pd.DataFrame()
class FastDatasetSearcher:
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
self.dataset_id = dataset_id
self.text_model = get_model()
self.token = os.environ.get('DATASET_KEY')
def load_page(self, page=0):
return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)
def quick_search(self, query, df):
if df.empty or not query.strip():
return df
try:
searchable_cols = []
if len(df) > 0:
for col in df.columns:
sample_val = df[col].iloc[0]
if not isinstance(sample_val, (np.ndarray, bytes)):
searchable_cols.append(col)
query_lower = query.lower()
query_terms = set(query_lower.split())
query_embedding = self.text_model.encode([query], show_progress_bar=False)[0]
scores = []
matched_any = []
for _, row in df.iterrows():
text_parts = []
row_matched = False
exact_match = False
priority_fields = ['description', 'matched_text']
other_fields = [col for col in searchable_cols if col not in priority_fields]
for col in priority_fields:
if col in row:
val = row[col]
if val is not None:
val_str = str(val).lower()
if query_lower in val_str.split():
exact_match = True
if any(term in val_str.split() for term in query_terms):
row_matched = True
text_parts.append(str(val))
for col in other_fields:
val = row[col]
if val is not None:
val_str = str(val).lower()
if query_lower in val_str.split():
exact_match = True
if any(term in val_str.split() for term in query_terms):
row_matched = True
text_parts.append(str(val))
text = ' '.join(text_parts)
if text.strip():
text_tokens = set(text.lower().split())
matching_terms = query_terms.intersection(text_tokens)
keyword_score = len(matching_terms) / len(query_terms) if len(query_terms) > 0 else 0.0
text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0])
combined_score = 0.7 * keyword_score + 0.3 * semantic_score
if exact_match:
combined_score *= EXACT_MATCH_BOOST
elif row_matched:
combined_score *= 1.2
else:
combined_score = 0.0
row_matched = False
scores.append(combined_score)
matched_any.append(row_matched)
results_df = df.copy()
results_df['score'] = scores
results_df['matched'] = matched_any
filtered_df = results_df[
(results_df['matched']) |
(results_df['score'] > MIN_SEARCH_SCORE)
]
return filtered_df.sort_values('score', ascending=False)
except:
return df
def play_text(text):
voice = st.session_state.get('global_voice', "en-US-AriaNeural")
audio_file = speak_with_edge_tts(text, voice=voice)
if audio_file:
play_and_download_audio(audio_file)
def arxiv_search(query, max_results=3):
# Simple arXiv search using RSS (for demonstration)
# In production, use official arXiv API or a library.
base_url = "http://export.arxiv.org/api/query"
params = {
'search_query': query.replace(' ', '+'),
'start': 0,
'max_results': max_results
}
response = requests.get(base_url, params=params, timeout=30)
if response.status_code == 200:
root = ET.fromstring(response.text)
ns = {"a": "http://www.w3.org/2005/Atom"}
entries = root.findall('a:entry', ns)
results = []
for entry in entries:
title = entry.find('a:title', ns).text.strip()
summary = entry.find('a:summary', ns).text.strip()
# Just truncating summary for demo
summary_short = summary[:300] + "..."
results.append((title, summary_short))
return results
return []
def summarize_arxiv_results(results):
# Just combine titles and short summaries
lines = []
for i, (title, summary) in enumerate(results, 1):
lines.append(f"Result {i}: {title}\n{summary}\n")
return "\n\n".join(lines)
def main():
st.title("ποΈ Voice Chat & Search")
# Sidebar
with st.sidebar:
# Editable user name
st.session_state['user_name'] = st.text_input("Current User:", value=st.session_state['user_name'])
# Global voice selection
st.session_state['global_voice'] = st.selectbox("Select Global Voice:", ENGLISH_VOICES, index=0)
st.session_state['max_items'] = st.number_input("Max Items per search iteration:", min_value=1, max_value=1000, value=st.session_state['max_items'])
st.subheader("π Saved Inputs & Responses")
saved_files = list_saved_inputs()
for fpath in saved_files:
user, ts, content = parse_md_file(fpath)
fname = os.path.basename(fpath)
st.write(f"- {fname} (User: {user})")
# Create voice component for input
voice_component = create_voice_component()
voice_val = voice_component(my_input_value="Start speaking...")
# Tabs: Voice Chat History, Arxiv Search, Dataset Search, Settings
tab1, tab2, tab3, tab4 = st.tabs(["π£οΈ Voice Chat History", "π ArXiv Search", "π Dataset Search", "βοΈ Settings"])
# ------------------ Voice Chat History -------------------------
with tab1:
st.subheader("Voice Chat History")
# List saved inputs and responses and allow playing them
files = list_saved_inputs()
for fpath in reversed(files):
user, ts, content = parse_md_file(fpath)
with st.expander(f"{ts} - {user}", expanded=False):
st.write(content)
if st.button("π Read Aloud", key=f"read_{fpath}"):
play_text(content)
# ------------------ ArXiv Search -------------------------
with tab2:
st.subheader("ArXiv Search")
# If we have a voice_val and autorun with ArXiv chosen:
edited_input = st.text_area("Enter or Edit Search Query:", value=(voice_val.strip() if voice_val else ""), height=100)
autorun = st.checkbox("β‘ Auto-Run", value=True)
run_arxiv = st.button("π ArXiv Search")
input_changed = (edited_input != st.session_state.get('old_val'))
if autorun and input_changed and edited_input.strip():
st.session_state['old_val'] = edited_input
# Save user input
save_input_as_md(st.session_state['user_name'], edited_input, prefix="input")
with st.spinner("Searching ArXiv..."):
results = arxiv_search(edited_input)
if results:
summary = summarize_arxiv_results(results)
# Save response
save_response_as_md(st.session_state['user_name'], summary, prefix="response")
st.write(summary)
# Autoplay TTS
play_text(summary)
else:
st.warning("No results found on ArXiv.")
if run_arxiv and edited_input.strip():
# Manual trigger
save_input_as_md(st.session_state['user_name'], edited_input, prefix="input")
with st.spinner("Searching ArXiv..."):
results = arxiv_search(edited_input)
if results:
summary = summarize_arxiv_results(results)
save_response_as_md(st.session_state['user_name'], summary, prefix="response")
st.write(summary)
play_text(summary)
else:
st.warning("No results found on ArXiv.")
# ------------------ Dataset Search -------------------------
with tab3:
st.subheader("Dataset Search")
search = FastDatasetSearcher()
query = st.text_input("Enter dataset search query:")
run_ds_search = st.button("Search Dataset")
num_results = st.slider("Max results:", 1, 100, 20)
if run_ds_search and query.strip():
with st.spinner("Searching dataset..."):
df = search.load_page()
results = search.quick_search(query, df)
if len(results) > 0:
st.write(f"Found {len(results)} results:")
shown = 0
for i, (_, result) in enumerate(results.iterrows(), 1):
if shown >= num_results:
break
with st.expander(f"Result {i}", expanded=(i==1)):
# Just print result keys/values here
for k, v in result.items():
if k not in ['score', 'matched']:
st.write(f"**{k}:** {v}")
shown += 1
else:
st.warning("No matching results found.")
# ------------------ Settings Tab -------------------------
with tab4:
st.subheader("Settings")
st.write("Adjust voice and search parameters in the sidebar.")
if st.button("ποΈ Clear Search History"):
st.session_state['search_history'] = []
# Optionally delete files:
# for fpath in list_saved_inputs():
# os.remove(fpath)
st.success("Search history cleared!")
if __name__ == "__main__":
main()
|