File size: 17,621 Bytes
642b060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
from pathlib import Path
from datetime import datetime
import edge_tts
import asyncio
import base64
import requests
from collections import defaultdict
from audio_recorder_streamlit import audio_recorder
import streamlit.components.v1 as components
import re
from urllib.parse import quote
from xml.etree import ElementTree as ET

# Initialize session state
if 'search_history' not in st.session_state:
    st.session_state['search_history'] = []
if 'last_voice_input' not in st.session_state:
    st.session_state['last_voice_input'] = ""
if 'transcript_history' not in st.session_state:
    st.session_state['transcript_history'] = []
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False
if 'search_columns' not in st.session_state:
    st.session_state['search_columns'] = []
if 'initial_search_done' not in st.session_state:
    st.session_state['initial_search_done'] = False
if 'tts_voice' not in st.session_state:
    st.session_state['tts_voice'] = "en-US-AriaNeural"
if 'arxiv_last_query' not in st.session_state:
    st.session_state['arxiv_last_query'] = ""
if 'old_val' not in st.session_state:
    st.session_state['old_val'] = None

def highlight_text(text, query):
    """Highlight case-insensitive occurrences of query in text with bold formatting."""
    if not query:
        return text
    pattern = re.compile(re.escape(query), re.IGNORECASE)
    return pattern.sub(lambda m: f"**{m.group(0)}**", text)

class VideoSearch:
    def __init__(self):
        self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
        self.load_dataset()
        
    def fetch_dataset_rows(self):
        """Fetch dataset from Hugging Face API"""
        try:
            url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
            response = requests.get(url, timeout=30)
            if response.status_code == 200:
                data = response.json()
                if 'rows' in data:
                    processed_rows = []
                    for row_data in data['rows']:
                        row = row_data.get('row', row_data)
                        for key in row:
                            if any(term in key.lower() for term in ['embed', 'vector', 'encoding']):
                                if isinstance(row[key], str):
                                    try:
                                        row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()]
                                    except:
                                        continue
                        processed_rows.append(row)
                    
                    df = pd.DataFrame(processed_rows)
                    st.session_state['search_columns'] = [col for col in df.columns 
                                                        if col not in ['video_embed', 'description_embed', 'audio_embed']]
                    return df
            return self.load_example_data()
        except:
            return self.load_example_data()

    def prepare_features(self):
        """Prepare embeddings with adaptive field detection"""
        try:
            embed_cols = [col for col in self.dataset.columns 
                         if any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
            
            embeddings = {}
            for col in embed_cols:
                try:
                    data = []
                    for row in self.dataset[col]:
                        if isinstance(row, str):
                            values = [float(x.strip()) for x in row.strip('[]').split(',') if x.strip()]
                        elif isinstance(row, list):
                            values = row
                        else:
                            continue
                        data.append(values)
                    
                    if data:
                        embeddings[col] = np.array(data)
                except:
                    continue
            
            if 'video_embed' in embeddings:
                self.video_embeds = embeddings['video_embed']
            else:
                self.video_embeds = next(iter(embeddings.values()))
                
            if 'description_embed' in embeddings:
                self.text_embeds = embeddings['description_embed']
            else:
                self.text_embeds = self.video_embeds
                
        except:
            # Fallback to random embeddings
            num_rows = len(self.dataset)
            self.video_embeds = np.random.randn(num_rows, 384)
            self.text_embeds = np.random.randn(num_rows, 384)

    def load_example_data(self):
        """Load example data as fallback"""
        example_data = [
            {
                "video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
                "youtube_id": "IO-vwtyicn4",
                "description": "This video shows a close-up of an ancient text carved into a surface.",
                "views": 45489,
                "start_time": 1452,
                "end_time": 1458,
                "video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
                "description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
            }
        ]
        return pd.DataFrame(example_data)
    
    def load_dataset(self):
        self.dataset = self.fetch_dataset_rows()
        self.prepare_features()

    def search(self, query, column=None, top_k=20):
        # Semantic search
        query_embedding = self.text_model.encode([query])[0]
        video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
        text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
        combined_sims = 0.5 * video_sims + 0.5 * text_sims

        # If a column is selected (not All Fields), strictly filter by textual match
        if column and column in self.dataset.columns and column != "All Fields":
            mask = self.dataset[column].astype(str).str.contains(query, case=False, na=False)
            # Only keep rows that contain the query text in the selected column
            combined_sims = combined_sims[mask]
            filtered_dataset = self.dataset[mask].copy()
        else:
            filtered_dataset = self.dataset.copy()

        # Get top results
        top_k = min(top_k, len(combined_sims))
        if top_k == 0:
            return []
        top_indices = np.argsort(combined_sims)[-top_k:][::-1]
        
        results = []
        filtered_dataset = filtered_dataset.iloc[top_indices]
        filtered_sims = combined_sims[top_indices]
        for idx, row in zip(top_indices, filtered_dataset.itertuples()):
            result = {'relevance_score': float(filtered_sims[list(top_indices).index(idx)])}
            for col in filtered_dataset.columns:
                if col not in ['video_embed', 'description_embed', 'audio_embed']:
                    result[col] = getattr(row, col)
            results.append(result)
        
        return results

@st.cache_resource
def get_speech_model():
    return edge_tts.Communicate

async def generate_speech(text, voice=None):
    if not text.strip():
        return None
    if not voice:
        voice = st.session_state['tts_voice']
    try:
        communicate = get_speech_model()(text, voice)
        audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
        await communicate.save(audio_file)
        return audio_file
    except Exception as e:
        st.error(f"Error generating speech: {e}")
        return None

def show_file_manager():
    """Display file manager interface"""
    st.subheader("πŸ“‚ File Manager")
    col1, col2 = st.columns(2)
    with col1:
        uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3'])
        if uploaded_file:
            with open(uploaded_file.name, "wb") as f:
                f.write(uploaded_file.getvalue())
            st.success(f"Uploaded: {uploaded_file.name}")
            st.experimental_rerun()
    
    with col2:
        if st.button("πŸ—‘ Clear All Files"):
            for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
                os.remove(f)
            st.success("All files cleared!")
            st.experimental_rerun()
    
    files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
    if files:
        st.write("### Existing Files")
        for f in files:
            with st.expander(f"πŸ“„ {os.path.basename(f)}"):
                if f.endswith('.mp3'):
                    st.audio(f)
                else:
                    with open(f, 'r', encoding='utf-8') as file:
                        st.text_area("Content", file.read(), height=100)
                if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
                    os.remove(f)
                    st.experimental_rerun()

def arxiv_search(query, max_results=5):
    """Perform a simple Arxiv search using their API and return top results."""
    base_url = "http://export.arxiv.org/api/query?"
    search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
    r = requests.get(search_url)
    if r.status_code == 200:
        root = ET.fromstring(r.text)
        ns = {'atom': 'http://www.w3.org/2005/Atom'}
        entries = root.findall('atom:entry', ns)
        results = []
        for entry in entries:
            title = entry.find('atom:title', ns).text.strip()
            summary = entry.find('atom:summary', ns).text.strip()
            link = None
            for l in entry.findall('atom:link', ns):
                if l.get('type') == 'text/html':
                    link = l.get('href')
                    break
            results.append((title, summary, link))
        return results
    return []

def perform_arxiv_lookup(q, vocal_summary=True, titles_summary=True, full_audio=False):
    results = arxiv_search(q, max_results=5)
    if not results:
        st.write("No Arxiv results found.")
        return
    st.markdown(f"**Arxiv Search Results for '{q}':**")
    for i, (title, summary, link) in enumerate(results, start=1):
        st.markdown(f"**{i}. {title}**")
        st.write(summary)
        if link:
            st.markdown(f"[View Paper]({link})")

    # TTS Options
    if vocal_summary:
        spoken_text = f"Here are some Arxiv results for {q}. "
        if titles_summary:
            spoken_text += " Titles: " + ", ".join([res[0] for res in results])
        else:
            spoken_text += " " + results[0][1][:200]

        audio_file = asyncio.run(generate_speech(spoken_text))
        if audio_file:
            st.audio(audio_file)
    
    if full_audio:
        full_text = ""
        for i,(title, summary, _) in enumerate(results, start=1):
            full_text += f"Result {i}: {title}. {summary} "
        audio_file_full = asyncio.run(generate_speech(full_text))
        if audio_file_full:
            st.write("### Full Audio")
            st.audio(audio_file_full)

def main():
    st.title("πŸŽ₯ Video & Arxiv Search with Voice Input")
    
    search = VideoSearch()
    
    tab1, tab2, tab3, tab4 = st.tabs(["πŸ” Search", "πŸŽ™οΈ Voice Input", "πŸ“š Arxiv", "πŸ“‚ Files"])
    
    # ---- Tab 1: Video Search ----
    with tab1:
        st.subheader("Search Videos")
        col1, col2 = st.columns([3, 1])
        with col1:
            query = st.text_input("Enter your search query:", 
                                  value="ancient" if not st.session_state['initial_search_done'] else "")
        with col2:
            search_column = st.selectbox("Search in field:", 
                                       ["All Fields"] + st.session_state['search_columns'])
        
        col3, col4 = st.columns(2)
        with col3:
            num_results = st.slider("Number of results:", 1, 100, 20)
        with col4:
            search_button = st.button("πŸ” Search")
        
        if (search_button or not st.session_state['initial_search_done']) and query:
            st.session_state['initial_search_done'] = True
            selected_column = None if search_column == "All Fields" else search_column
            with st.spinner("Searching..."):
                results = search.search(query, selected_column, num_results)
            
            st.session_state['search_history'].append({
                'query': query,
                'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                'results': results[:5] 
            })
            
            for i, result in enumerate(results, 1):
                # Highlight the query in the description
                highlighted_desc = highlight_text(result['description'], query)
                with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=(i==1)):
                    cols = st.columns([2, 1])
                    with cols[0]:
                        st.markdown("**Description:**")
                        st.write(highlighted_desc)
                        st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
                        st.markdown(f"**Views:** {result['views']:,}")
                    
                    with cols[1]:
                        st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
                        if result.get('youtube_id'):
                            st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
                        
                        if st.button(f"πŸ”Š Audio Summary {i}", key=f"audio_{i}"):
                            summary = f"Video summary: {result['description'][:200]}"
                            audio_file = asyncio.run(generate_speech(summary))
                            if audio_file:
                                st.audio(audio_file)

    # ---- Tab 2: Voice Input ----
    # Reintroduce the mycomponent from earlier code for voice input accumulation
    with tab2:
        st.subheader("Voice Input (HTML Component)")

        # Declare the custom component
        mycomponent = components.declare_component("mycomponent", path="mycomponent")
        
        # Use the component to get accumulated voice input
        val = mycomponent(my_input_value="Hello")
        
        if val:
            val_stripped = val.replace('\n', ' ')
            edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)

            # Just allow searching the videos from the edited input
            if st.button("πŸ” Search from Edited Voice Input"):
                results = search.search(edited_input, None, 20)
                for i, result in enumerate(results, 1):
                    # Highlight query in description
                    highlighted_desc = highlight_text(result['description'], edited_input)
                    with st.expander(f"Result {i}", expanded=(i==1)):
                        st.write(highlighted_desc)
                        if result.get('youtube_id'):
                            st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")

        # Optionally also let user record audio via audio_recorder (not integrated with transcription)
        st.write("Or record audio (not ASR integrated):")
        audio_bytes = audio_recorder()
        if audio_bytes:
            audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
            with open(audio_path, "wb") as f:
                f.write(audio_bytes)
            st.success("Audio recorded successfully!")
            # No transcription is provided since no external ASR is included here.
            if os.path.exists(audio_path):
                os.remove(audio_path)

    # ---- Tab 3: Arxiv Search ----
    with tab3:
        st.subheader("Arxiv Search")
        q = st.text_input("Enter your Arxiv search query:", value=st.session_state['arxiv_last_query'])
        vocal_summary = st.checkbox("πŸŽ™ Short Audio Summary", value=True)
        titles_summary = st.checkbox("πŸ”– Titles Only", value=True)
        full_audio = st.checkbox("πŸ“š Full Audio Results", value=False)
        
        if st.button("πŸ” Arxiv Search"):
            st.session_state['arxiv_last_query'] = q
            perform_arxiv_lookup(q, vocal_summary=vocal_summary, titles_summary=titles_summary, full_audio=full_audio)

    # ---- Tab 4: File Manager ----
    with tab4:
        show_file_manager()

    # Sidebar
    with st.sidebar:
        st.subheader("βš™οΈ Settings & History")
        if st.button("πŸ—‘οΈ Clear History"):
            st.session_state['search_history'] = []
            st.experimental_rerun()
        
        st.markdown("### Recent Searches")
        for entry in reversed(st.session_state['search_history'][-5:]):
            with st.expander(f"{entry['timestamp']}: {entry['query']}"):
                for i, result in enumerate(entry['results'], 1):
                    st.write(f"{i}. {result['description'][:100]}...")

        st.markdown("### Voice Settings")
        st.selectbox("TTS Voice:", 
                     ["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
                     key="tts_voice")

if __name__ == "__main__":
    main()