File size: 12,713 Bytes
2e6063c
 
 
 
 
 
 
 
 
54e3aa1
2e6063c
 
 
 
 
 
 
 
 
 
 
 
 
54e3aa1
 
 
 
 
 
 
2e6063c
 
 
 
54e3aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e6063c
 
 
 
 
54e3aa1
 
 
 
 
2e6063c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54e3aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e6063c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54e3aa1
2e6063c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54e3aa1
2e6063c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54e3aa1
2e6063c
 
 
54e3aa1
 
 
2e6063c
 
 
 
 
 
 
54e3aa1
 
 
 
 
 
 
 
 
 
2e6063c
 
 
 
54e3aa1
2e6063c
54e3aa1
2e6063c
 
 
54e3aa1
2e6063c
 
 
 
 
 
54e3aa1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
import random
from pathlib import Path
from datetime import datetime, timedelta
import edge_tts
import asyncio
import requests
from collections import defaultdict
import streamlit.components.v1 as components
from urllib.parse import quote
from xml.etree import ElementTree as ET
from datasets import load_dataset
import base64
import re

# -------------------- Configuration & Constants --------------------
# User name assignment
USER_NAMES = [
    "Alex", "Jordan", "Taylor", "Morgan", "Rowan", "Avery", "Riley", "Quinn",
    "Casey", "Jesse", "Reese", "Skyler", "Ellis", "Devon", "Aubrey", "Kendall",
    "Parker", "Dakota", "Sage", "Finley"
]

ROWS_PER_PAGE = 100
MIN_SEARCH_SCORE = 0.3
EXACT_MATCH_BOOST = 2.0
SAVED_INPUTS_DIR = "saved_inputs"
os.makedirs(SAVED_INPUTS_DIR, exist_ok=True)

# -------------------- Session State Initialization --------------------
SESSION_VARS = {
    'search_history': [],
    'last_voice_input': "",
    'transcript_history': [],
    'should_rerun': False,
    'search_columns': [],
    'initial_search_done': False,
    'tts_voice': "en-US-AriaNeural",
    'arxiv_last_query': "",
    'dataset_loaded': False,
    'current_page': 0,
    'data_cache': None,
    'dataset_info': None,
    'nps_submitted': False,
    'nps_last_shown': None,
    'old_val': None,
    'voice_text': None,
    'user_name': None,   # New: Track user name
    'max_items': 100      # Default max items
}

for var, default in SESSION_VARS.items():
    if var not in st.session_state:
        st.session_state[var] = default

# Assign user name if not assigned
if st.session_state['user_name'] is None:
    st.session_state['user_name'] = random.choice(USER_NAMES)

# -------------------- Utility Functions --------------------
def create_voice_component():
    """Create the voice input component"""
    mycomponent = components.declare_component(
        "mycomponent",
        path="mycomponent"
    )
    return mycomponent

def clean_for_speech(text: str) -> str:
    text = text.replace("\n", " ")
    text = text.replace("</s>", " ")
    text = text.replace("#", "")
    text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text

async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
    """Generate audio using Edge TTS"""
    text = clean_for_speech(text)
    if not text.strip():
        return None
    rate_str = f"{rate:+d}%"
    pitch_str = f"{pitch:+d}Hz"
    communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
    out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
    await communicate.save(out_fn)
    return out_fn

def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
    return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))

def play_and_download_audio(file_path):
    """Play and provide download link for audio"""
    if file_path and os.path.exists(file_path):
        st.audio(file_path)
        dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
        st.markdown(dl_link, unsafe_allow_html=True)

@st.cache_resource
def get_model():
    return SentenceTransformer('all-MiniLM-L6-v2')

@st.cache_data
def load_dataset_page(dataset_id, token, page, rows_per_page):
    try:
        start_idx = page * rows_per_page
        end_idx = start_idx + rows_per_page
        dataset = load_dataset(
            dataset_id,
            token=token,
            streaming=False,
            split=f'train[{start_idx}:{end_idx}]'
        )
        return pd.DataFrame(dataset)
    except Exception as e:
        st.error(f"Error loading page {page}: {str(e)}")
        return pd.DataFrame()

@st.cache_data
def get_dataset_info(dataset_id, token):
    try:
        dataset = load_dataset(dataset_id, token=token, streaming=True)
        return dataset['train'].info
    except Exception as e:
        st.error(f"Error loading dataset info: {str(e)}")
        return None

def fetch_dataset_info(dataset_id):
    info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
    try:
        response = requests.get(info_url, timeout=30)
        if response.status_code == 200:
            return response.json()
    except Exception as e:
        st.warning(f"Error fetching dataset info: {e}")
    return None

def generate_filename(text):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower()
    safe_text = re.sub(r'[-\s]+', '-', safe_text)
    return f"{timestamp}_{safe_text}.md"

def save_input_as_md(text):
    if not text.strip():
        return
    fn = generate_filename(text)
    full_path = os.path.join(SAVED_INPUTS_DIR, fn)
    with open(full_path, 'w', encoding='utf-8') as f:
        f.write(f"# User: {st.session_state['user_name']}\n")
        f.write(f"**Timestamp:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
        f.write(text)
    return full_path

def list_saved_inputs():
    files = sorted(glob.glob(os.path.join(SAVED_INPUTS_DIR, "*.md")))
    return files

def render_result(result):
    score = result.get('relevance_score', 0)
    result_filtered = {k: v for k, v in result.items() 
                      if k not in ['relevance_score', 'video_embed', 'description_embed', 'audio_embed']}
    if 'youtube_id' in result:
        st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
    
    cols = st.columns([2, 1])
    with cols[0]:
        text_content = []
        for key, value in result_filtered.items():
            if isinstance(value, (str, int, float)):
                st.write(f"**{key}:** {value}")
                if isinstance(value, str) and len(value.strip()) > 0:
                    text_content.append(f"{key}: {value}")
    
    with cols[1]:
        st.metric("Relevance", f"{score:.2%}")
        
        voices = {
            "Aria (US Female)": "en-US-AriaNeural",
            "Guy (US Male)": "en-US-GuyNeural",
            "Sonia (UK Female)": "en-GB-SoniaNeural",
            "Tony (UK Male)": "en-GB-TonyNeural"
        }
        
        selected_voice = st.selectbox(
            "Voice:",
            list(voices.keys()),
            key=f"voice_{result.get('video_id', '')}"
        )
        
        if st.button("πŸ”Š Read", key=f"read_{result.get('video_id', '')}"):
            text_to_read = ". ".join(text_content)
            audio_file = speak_with_edge_tts(text_to_read, voices[selected_voice])
            if audio_file:
                play_and_download_audio(audio_file)

class FastDatasetSearcher:
    def __init__(self, dataset_id="tomg-group-umd/cinepile"):
        self.dataset_id = dataset_id
        self.text_model = get_model()
        self.token = os.environ.get('DATASET_KEY')
        if not self.token:
            st.error("Please set the DATASET_KEY environment variable")
            st.stop()
        
        if st.session_state['dataset_info'] is None:
            st.session_state['dataset_info'] = get_dataset_info(self.dataset_id, self.token)

    def load_page(self, page=0):
        return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)

    def quick_search(self, query, df):
        if df.empty or not query.strip():
            return df
        
        try:
            searchable_cols = []
            for col in df.columns:
                sample_val = df[col].iloc[0] if len(df) > 0 else ""
                if not isinstance(sample_val, (np.ndarray, bytes)):
                    searchable_cols.append(col)
            
            query_lower = query.lower()
            query_terms = set(query_lower.split())
            query_embedding = self.text_model.encode([query], show_progress_bar=False)[0]
            
            scores = []
            matched_any = []
            
            for _, row in df.iterrows():
                text_parts = []
                row_matched = False
                exact_match = False
                
                priority_fields = ['description', 'matched_text']
                other_fields = [col for col in searchable_cols if col not in priority_fields]
                
                for col in priority_fields:
                    if col in row:
                        val = row[col]
                        if val is not None:
                            val_str = str(val).lower()
                            if query_lower in val_str.split():
                                exact_match = True
                            if any(term in val_str.split() for term in query_terms):
                                row_matched = True
                            text_parts.append(str(val))
                
                for col in other_fields:
                    val = row[col]
                    if val is not None:
                        val_str = str(val).lower()
                        if query_lower in val_str.split():
                            exact_match = True
                        if any(term in val_str.split() for term in query_terms):
                            row_matched = True
                        text_parts.append(str(val))
                
                text = ' '.join(text_parts)
                
                if text.strip():
                    text_tokens = set(text.lower().split())
                    matching_terms = query_terms.intersection(text_tokens)
                    keyword_score = len(matching_terms) / len(query_terms) if len(query_terms) > 0 else 0.0
                    
                    text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
                    semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0])
                    
                    combined_score = 0.7 * keyword_score + 0.3 * semantic_score
                    
                    if exact_match:
                        combined_score *= EXACT_MATCH_BOOST
                    elif row_matched:
                        combined_score *= 1.2
                else:
                    combined_score = 0.0
                    row_matched = False
                
                scores.append(combined_score)
                matched_any.append(row_matched)
            
            results_df = df.copy()
            results_df['score'] = scores
            results_df['matched'] = matched_any
            
            filtered_df = results_df[
                (results_df['matched']) |
                (results_df['score'] > MIN_SEARCH_SCORE)
            ]
            
            return filtered_df.sort_values('score', ascending=False)
            
        except Exception as e:
            st.error(f"Search error: {str(e)}")
            return df

# -------------------- Main App --------------------
def main():
    st.title("πŸŽ₯ Smart Video & Voice Search")
    
    # Load saved inputs (conversation history)
    saved_files = list_saved_inputs()
    
    # Initialize components
    voice_component = create_voice_component()
    search = FastDatasetSearcher()
    
    # Voice input at top level
    voice_val = voice_component(my_input_value="Start speaking...")
    
    # User can override max items
    with st.sidebar:
        st.write(f"**Current User:** {st.session_state['user_name']}")
        st.session_state['max_items'] = st.number_input("Max Items per search iteration:", min_value=1, max_value=1000, value=st.session_state['max_items'])
        st.subheader("πŸ“ Saved Inputs:")
        # Show saved md files in order
        for fpath in saved_files:
            fname = os.path.basename(fpath)
            st.write(f"- [{fname}]({fpath})")
    
    if voice_val:
        voice_text = str(voice_val).strip()
        edited_input = st.text_area("✏️ Edit Voice Input:", value=voice_text, height=100)
        
        # Auto-run default True now
        run_option = st.selectbox("Select Search Type:", 
                                  ["Quick Search", "Deep Search", "Voice Summary"])
        
        col1, col2 = st.columns(2)
        with col1:
            autorun = st.checkbox("⚑ Auto-Run", value=True)
        with col2:
            full_audio = st.checkbox("πŸ”Š Full Audio", value=False)
        
        input_changed = (voice_text != st.session_state.get('old_val'))
        
        if autorun and input_changed: