File size: 12,957 Bytes
3874223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
from pathlib import Path
from datetime import datetime, timedelta
import edge_tts
import asyncio
import requests
from collections import defaultdict
from audio_recorder_streamlit import audio_recorder
import streamlit.components.v1 as components
from urllib.parse import quote
from xml.etree import ElementTree as ET
from datasets import load_dataset
# π§ Initialize session state variables
SESSION_VARS = {
'search_history': [], # Track search history
'last_voice_input': "", # Last voice input
'transcript_history': [], # Conversation history
'should_rerun': False, # Trigger for UI updates
'search_columns': [], # Available search columns
'initial_search_done': False, # First search flag
'tts_voice': "en-US-AriaNeural", # Default voice
'arxiv_last_query': "", # Last ArXiv search
'dataset_loaded': False, # Dataset load status
'current_page': 0, # Current data page
'data_cache': None, # Data cache
'dataset_info': None, # Dataset metadata
'nps_submitted': False, # Track if user submitted NPS
'nps_last_shown': None, # When NPS was last shown
'voice_recorder_key': str(datetime.now()) # Unique key for voice recorder
}
# π Constants
ROWS_PER_PAGE = 100
MIN_SEARCH_SCORE = 0.3
EXACT_MATCH_BOOST = 2.0
# Initialize session state
for var, default in SESSION_VARS.items():
if var not in st.session_state:
st.session_state[var] = default
class NPSTracker:
"""π― Net Promoter Score Tracker - Measuring happiness in numbers!"""
def __init__(self, log_file="nps_logs.csv"):
self.log_file = Path(log_file)
self.initialize_log()
def initialize_log(self):
"""π Create log file if it doesn't exist"""
if not self.log_file.exists():
df = pd.DataFrame(columns=['timestamp', 'score', 'feedback'])
df.to_csv(self.log_file, index=False)
def log_response(self, score, feedback=""):
"""ποΈ Log new NPS response"""
new_entry = pd.DataFrame([{
'timestamp': datetime.now().isoformat(),
'score': score,
'feedback': feedback
}])
if self.log_file.exists():
df = pd.read_csv(self.log_file)
df = pd.concat([df, new_entry], ignore_index=True)
else:
df = new_entry
df.to_csv(self.log_file, index=False)
def get_nps_stats(self, days=30):
"""π Calculate NPS stats for recent period"""
if not self.log_file.exists():
return {
'nps_score': 0,
'promoters': 0,
'passives': 0,
'detractors': 0,
'total_responses': 0,
'recent_feedback': []
}
df = pd.read_csv(self.log_file)
df['timestamp'] = pd.to_datetime(df['timestamp'])
cutoff = datetime.now() - timedelta(days=days)
recent_df = df[df['timestamp'] > cutoff]
if len(recent_df) == 0:
return {
'nps_score': 0,
'promoters': 0,
'passives': 0,
'detractors': 0,
'total_responses': 0,
'recent_feedback': []
}
total = len(recent_df)
promoters = len(recent_df[recent_df['score'] >= 9])
passives = len(recent_df[recent_df['score'].between(7, 8)])
detractors = len(recent_df[recent_df['score'] <= 6])
nps = ((promoters/total) - (detractors/total)) * 100
recent_feedback = recent_df[recent_df['feedback'].notna()].sort_values(
'timestamp', ascending=False
)['feedback'].head(5).tolist()
return {
'nps_score': round(nps, 1),
'promoters': promoters,
'passives': passives,
'detractors': detractors,
'total_responses': total,
'recent_feedback': recent_feedback
}
def setup_voice_recorder():
"""π€ Create an in-browser voice recorder component"""
return components.html(
"""
<div style="display: flex; flex-direction: column; align-items: center; gap: 10px;">
<button id="startButton"
style="padding: 10px 20px; background: #ff4b4b; color: white; border: none; border-radius: 5px; cursor: pointer">
Start Recording
</button>
<button id="stopButton"
style="padding: 10px 20px; background: #4b4bff; color: white; border: none; border-radius: 5px; cursor: pointer"
disabled>
Stop Recording
</button>
<audio id="audioPlayback" controls style="display: none;"></audio>
<div id="statusText" style="color: #666;">Ready to record...</div>
</div>
<script>
let mediaRecorder;
let audioChunks = [];
document.getElementById('startButton').onclick = async () => {
try {
const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
mediaRecorder = new MediaRecorder(stream);
mediaRecorder.ondataavailable = (e) => {
audioChunks.push(e.data);
};
mediaRecorder.onstop = () => {
const audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
const audioUrl = URL.createObjectURL(audioBlob);
document.getElementById('audioPlayback').src = audioUrl;
document.getElementById('audioPlayback').style.display = 'block';
// Send to Python
const reader = new FileReader();
reader.readAsDataURL(audioBlob);
reader.onloadend = () => {
window.parent.postMessage({
type: 'voiceData',
data: reader.result
}, '*');
};
};
mediaRecorder.start();
document.getElementById('startButton').disabled = true;
document.getElementById('stopButton').disabled = false;
document.getElementById('statusText').textContent = 'Recording...';
} catch (err) {
console.error('Error:', err);
document.getElementById('statusText').textContent = 'Error: ' + err.message;
}
};
document.getElementById('stopButton').onclick = () => {
mediaRecorder.stop();
document.getElementById('startButton').disabled = false;
document.getElementById('stopButton').disabled = true;
document.getElementById('statusText').textContent = 'Recording complete!';
};
</script>
""",
height=200,
)
def render_nps_sidebar():
"""π¨ Show NPS metrics in sidebar"""
tracker = NPSTracker()
stats = tracker.get_nps_stats()
st.sidebar.markdown("### π User Satisfaction Metrics")
score_color = (
"π’" if stats['nps_score'] >= 50 else
"π‘" if stats['nps_score'] >= 0 else
"π΄"
)
st.sidebar.metric(
"Net Promoter Score",
f"{score_color} {stats['nps_score']}"
)
st.sidebar.markdown("#### Response Breakdown")
col1, col2, col3 = st.sidebar.columns(3)
with col1:
st.metric("π", stats['promoters'])
with col2:
st.metric("π", stats['passives'])
with col3:
st.metric("π", stats['detractors'])
if stats['recent_feedback']:
st.sidebar.markdown("#### Recent Feedback")
for feedback in stats['recent_feedback']:
st.sidebar.info(feedback[:100] + "..." if len(feedback) > 100 else feedback)
def render_nps_survey():
"""π― Show NPS survey form"""
tracker = NPSTracker()
st.markdown("### π Your Feedback Matters!")
score = st.slider(
"How likely are you to recommend this search tool to others?",
0, 10,
help="0 = Not likely at all, 10 = Extremely likely"
)
feedback = st.text_area("Additional feedback (optional)")
if st.button("Submit Feedback", key="nps_submit"):
tracker.log_response(score, feedback)
st.session_state['nps_submitted'] = True
st.success("Thank you for your feedback! π")
st.experimental_rerun()
[... Rest of your existing code for search functionality ...]
def main():
st.title("π₯ Smart Video Search with Voice & Feedback")
# Initialize search
search = VideoSearch()
# Add NPS metrics to sidebar
with st.sidebar:
render_nps_sidebar()
# Show survey periodically
current_time = datetime.now()
if (not st.session_state.get('nps_submitted') and
(not st.session_state.get('nps_last_shown') or
current_time - st.session_state['nps_last_shown'] > timedelta(hours=24))):
with st.expander("π Quick Feedback", expanded=True):
render_nps_survey()
st.session_state['nps_last_shown'] = current_time
# Create main tabs
tab1, tab2, tab3, tab4 = st.tabs([
"π Search", "ποΈ Voice Input", "π ArXiv", "π Files"
])
# Search Tab
with tab1:
st.subheader("Search Videos")
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Enter search query:",
value="" if st.session_state['initial_search_done'] else "aliens")
with col2:
search_column = st.selectbox("Search in:",
["All Fields"] + st.session_state['search_columns'])
col3, col4 = st.columns(2)
with col3:
num_results = st.slider("Max results:", 1, 100, 20)
with col4:
search_button = st.button("π Search")
if (search_button or not st.session_state['initial_search_done']) and query:
st.session_state['initial_search_done'] = True
selected_column = None if search_column == "All Fields" else search_column
with st.spinner("Searching..."):
results = search.search(query, selected_column, num_results)
if results:
st.session_state['search_history'].append({
'query': query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': results[:5]
})
st.write(f"Found {len(results)} results:")
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}", expanded=(i==1)):
render_result(result)
else:
st.warning("No matching results found.")
# Voice Input Tab
with tab2:
st.subheader("Voice Search")
st.write("ποΈ Record your query:")
voice_recorder = setup_voice_recorder()
if 'voice_data' in st.session_state:
with st.spinner("Processing voice..."):
voice_query = transcribe_audio(st.session_state['voice_data'])
st.markdown("**Transcribed Text:**")
st.write(voice_query)
if st.button("π Search with Voice"):
results = search.search(voice_query, None, 20)
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}", expanded=(i==1)):
render_result(result)
# ArXiv Tab
with tab3:
st.subheader("ArXiv Search")
arxiv_query = st.text_input("Search ArXiv:", value=st.session_state['arxiv_last_query'])
vocal_summary = st.checkbox("π Quick Audio Summary", value=True)
titles_summary = st.checkbox("π Titles Only", value=True)
full_audio = st.checkbox("π Full Audio Summary", value=False)
if st.button("π Search ArXiv"):
st.session_state['arxiv_last_query'] = arxiv_query
perform_arxiv_lookup(arxiv_query, vocal_summary, titles_summary, full_audio)
# File Manager Tab
with tab4:
show_file_manager()
if __name__ == "__main__":
main() |