File size: 12,957 Bytes
3874223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
from pathlib import Path
from datetime import datetime, timedelta
import edge_tts
import asyncio
import requests
from collections import defaultdict
from audio_recorder_streamlit import audio_recorder
import streamlit.components.v1 as components
from urllib.parse import quote
from xml.etree import ElementTree as ET
from datasets import load_dataset

# 🧠 Initialize session state variables 
SESSION_VARS = {
    'search_history': [],          # Track search history
    'last_voice_input': "",        # Last voice input
    'transcript_history': [],      # Conversation history
    'should_rerun': False,         # Trigger for UI updates
    'search_columns': [],          # Available search columns
    'initial_search_done': False,  # First search flag
    'tts_voice': "en-US-AriaNeural", # Default voice
    'arxiv_last_query': "",        # Last ArXiv search
    'dataset_loaded': False,       # Dataset load status
    'current_page': 0,            # Current data page
    'data_cache': None,           # Data cache
    'dataset_info': None,         # Dataset metadata
    'nps_submitted': False,       # Track if user submitted NPS
    'nps_last_shown': None,       # When NPS was last shown
    'voice_recorder_key': str(datetime.now())  # Unique key for voice recorder
}

# πŸ“Š Constants
ROWS_PER_PAGE = 100
MIN_SEARCH_SCORE = 0.3
EXACT_MATCH_BOOST = 2.0

# Initialize session state
for var, default in SESSION_VARS.items():
    if var not in st.session_state:
        st.session_state[var] = default

class NPSTracker:
    """🎯 Net Promoter Score Tracker - Measuring happiness in numbers!"""
    
    def __init__(self, log_file="nps_logs.csv"):
        self.log_file = Path(log_file)
        self.initialize_log()
    
    def initialize_log(self):
        """πŸ“ Create log file if it doesn't exist"""
        if not self.log_file.exists():
            df = pd.DataFrame(columns=['timestamp', 'score', 'feedback'])
            df.to_csv(self.log_file, index=False)
    
    def log_response(self, score, feedback=""):
        """πŸ–ŠοΈ Log new NPS response"""
        new_entry = pd.DataFrame([{
            'timestamp': datetime.now().isoformat(),
            'score': score,
            'feedback': feedback
        }])
        
        if self.log_file.exists():
            df = pd.read_csv(self.log_file)
            df = pd.concat([df, new_entry], ignore_index=True)
        else:
            df = new_entry
        
        df.to_csv(self.log_file, index=False)
    
    def get_nps_stats(self, days=30):
        """πŸ“Š Calculate NPS stats for recent period"""
        if not self.log_file.exists():
            return {
                'nps_score': 0,
                'promoters': 0,
                'passives': 0,
                'detractors': 0,
                'total_responses': 0,
                'recent_feedback': []
            }
        
        df = pd.read_csv(self.log_file)
        df['timestamp'] = pd.to_datetime(df['timestamp'])
        
        cutoff = datetime.now() - timedelta(days=days)
        recent_df = df[df['timestamp'] > cutoff]
        
        if len(recent_df) == 0:
            return {
                'nps_score': 0,
                'promoters': 0,
                'passives': 0,
                'detractors': 0,
                'total_responses': 0,
                'recent_feedback': []
            }
        
        total = len(recent_df)
        promoters = len(recent_df[recent_df['score'] >= 9])
        passives = len(recent_df[recent_df['score'].between(7, 8)])
        detractors = len(recent_df[recent_df['score'] <= 6])
        
        nps = ((promoters/total) - (detractors/total)) * 100
        
        recent_feedback = recent_df[recent_df['feedback'].notna()].sort_values(
            'timestamp', ascending=False
        )['feedback'].head(5).tolist()
        
        return {
            'nps_score': round(nps, 1),
            'promoters': promoters,
            'passives': passives,
            'detractors': detractors,
            'total_responses': total,
            'recent_feedback': recent_feedback
        }

def setup_voice_recorder():
    """🎀 Create an in-browser voice recorder component"""
    return components.html(
        """
        <div style="display: flex; flex-direction: column; align-items: center; gap: 10px;">
            <button id="startButton" 
                    style="padding: 10px 20px; background: #ff4b4b; color: white; border: none; border-radius: 5px; cursor: pointer">
                Start Recording
            </button>
            <button id="stopButton" 
                    style="padding: 10px 20px; background: #4b4bff; color: white; border: none; border-radius: 5px; cursor: pointer"
                    disabled>
                Stop Recording
            </button>
            <audio id="audioPlayback" controls style="display: none;"></audio>
            <div id="statusText" style="color: #666;">Ready to record...</div>
        </div>
        <script>
        let mediaRecorder;
        let audioChunks = [];
        
        document.getElementById('startButton').onclick = async () => {
            try {
                const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
                mediaRecorder = new MediaRecorder(stream);
                
                mediaRecorder.ondataavailable = (e) => {
                    audioChunks.push(e.data);
                };
                
                mediaRecorder.onstop = () => {
                    const audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
                    const audioUrl = URL.createObjectURL(audioBlob);
                    document.getElementById('audioPlayback').src = audioUrl;
                    document.getElementById('audioPlayback').style.display = 'block';
                    
                    // Send to Python
                    const reader = new FileReader();
                    reader.readAsDataURL(audioBlob);
                    reader.onloadend = () => {
                        window.parent.postMessage({
                            type: 'voiceData',
                            data: reader.result
                        }, '*');
                    };
                };
                
                mediaRecorder.start();
                document.getElementById('startButton').disabled = true;
                document.getElementById('stopButton').disabled = false;
                document.getElementById('statusText').textContent = 'Recording...';
                
            } catch (err) {
                console.error('Error:', err);
                document.getElementById('statusText').textContent = 'Error: ' + err.message;
            }
        };
        
        document.getElementById('stopButton').onclick = () => {
            mediaRecorder.stop();
            document.getElementById('startButton').disabled = false;
            document.getElementById('stopButton').disabled = true;
            document.getElementById('statusText').textContent = 'Recording complete!';
        };
        </script>
        """,
        height=200,
    )

def render_nps_sidebar():
    """🎨 Show NPS metrics in sidebar"""
    tracker = NPSTracker()
    stats = tracker.get_nps_stats()
    
    st.sidebar.markdown("### πŸ“Š User Satisfaction Metrics")
    
    score_color = (
        "🟒" if stats['nps_score'] >= 50 else 
        "🟑" if stats['nps_score'] >= 0 else 
        "πŸ”΄"
    )
    st.sidebar.metric(
        "Net Promoter Score",
        f"{score_color} {stats['nps_score']}"
    )
    
    st.sidebar.markdown("#### Response Breakdown")
    col1, col2, col3 = st.sidebar.columns(3)
    with col1:
        st.metric("πŸ˜ƒ", stats['promoters'])
    with col2:
        st.metric("😐", stats['passives'])
    with col3:
        st.metric("πŸ˜•", stats['detractors'])
    
    if stats['recent_feedback']:
        st.sidebar.markdown("#### Recent Feedback")
        for feedback in stats['recent_feedback']:
            st.sidebar.info(feedback[:100] + "..." if len(feedback) > 100 else feedback)

def render_nps_survey():
    """🎯 Show NPS survey form"""
    tracker = NPSTracker()
    
    st.markdown("### πŸ“ Your Feedback Matters!")
    score = st.slider(
        "How likely are you to recommend this search tool to others?",
        0, 10, 
        help="0 = Not likely at all, 10 = Extremely likely"
    )
    
    feedback = st.text_area("Additional feedback (optional)")
    
    if st.button("Submit Feedback", key="nps_submit"):
        tracker.log_response(score, feedback)
        st.session_state['nps_submitted'] = True
        st.success("Thank you for your feedback! πŸ™")
        st.experimental_rerun()

[... Rest of your existing code for search functionality ...]

def main():
    st.title("πŸŽ₯ Smart Video Search with Voice & Feedback")
    
    # Initialize search
    search = VideoSearch()
    
    # Add NPS metrics to sidebar
    with st.sidebar:
        render_nps_sidebar()
        
        # Show survey periodically
        current_time = datetime.now()
        if (not st.session_state.get('nps_submitted') and 
            (not st.session_state.get('nps_last_shown') or 
             current_time - st.session_state['nps_last_shown'] > timedelta(hours=24))):
            with st.expander("πŸ“ Quick Feedback", expanded=True):
                render_nps_survey()
                st.session_state['nps_last_shown'] = current_time
    
    # Create main tabs
    tab1, tab2, tab3, tab4 = st.tabs([
        "πŸ” Search", "πŸŽ™οΈ Voice Input", "πŸ“š ArXiv", "πŸ“‚ Files"
    ])
    
    # Search Tab
    with tab1:
        st.subheader("Search Videos")
        col1, col2 = st.columns([3, 1])
        with col1:
            query = st.text_input("Enter search query:", 
                                value="" if st.session_state['initial_search_done'] else "aliens")
        with col2:
            search_column = st.selectbox("Search in:", 
                                       ["All Fields"] + st.session_state['search_columns'])
        
        col3, col4 = st.columns(2)
        with col3:
            num_results = st.slider("Max results:", 1, 100, 20)
        with col4:
            search_button = st.button("πŸ” Search")
        
        if (search_button or not st.session_state['initial_search_done']) and query:
            st.session_state['initial_search_done'] = True
            selected_column = None if search_column == "All Fields" else search_column
            
            with st.spinner("Searching..."):
                results = search.search(query, selected_column, num_results)
            
            if results:
                st.session_state['search_history'].append({
                    'query': query,
                    'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                    'results': results[:5]
                })
                
                st.write(f"Found {len(results)} results:")
                for i, result in enumerate(results, 1):
                    with st.expander(f"Result {i}", expanded=(i==1)):
                        render_result(result)
            else:
                st.warning("No matching results found.")
    
    # Voice Input Tab
    with tab2:
        st.subheader("Voice Search")
        st.write("πŸŽ™οΈ Record your query:")
        
        voice_recorder = setup_voice_recorder()
        
        if 'voice_data' in st.session_state:
            with st.spinner("Processing voice..."):
                voice_query = transcribe_audio(st.session_state['voice_data'])
                st.markdown("**Transcribed Text:**")
                st.write(voice_query)
                
                if st.button("πŸ” Search with Voice"):
                    results = search.search(voice_query, None, 20)
                    for i, result in enumerate(results, 1):
                        with st.expander(f"Result {i}", expanded=(i==1)):
                            render_result(result)
    
    # ArXiv Tab
    with tab3:
        st.subheader("ArXiv Search")
        arxiv_query = st.text_input("Search ArXiv:", value=st.session_state['arxiv_last_query'])
        vocal_summary = st.checkbox("πŸŽ™ Quick Audio Summary", value=True)
        titles_summary = st.checkbox("πŸ”– Titles Only", value=True)
        full_audio = st.checkbox("πŸ“š Full Audio Summary", value=False)
        
        if st.button("πŸ” Search ArXiv"):
            st.session_state['arxiv_last_query'] = arxiv_query
            perform_arxiv_lookup(arxiv_query, vocal_summary, titles_summary, full_audio)
    
    # File Manager Tab
    with tab4:
        show_file_manager()

if __name__ == "__main__":
    main()